

PROGRAMOVATELNÉ AUTOMATY

Peripheral modules on CIB Common Installation Bus®

TXV 004 13.02

Peripheral modules on CIB bus

TXV 004 13.02

1. edition - January 2014

CONTENT

1.	INTR	ODUCTION	3
	1.1.	CIB - COMMON INSTALLATION BUS	3
2.	CIB N	/ASTER	
	2.1.	MASTER CONFIGURATION	
	2.1.	THE STRUCTURE OF THE TRANSMITTED DATA	
	2.2.	Power CIB bus	
3.	CIB U	INITS, MODULES	
	3.1.	C-AM-06001	18
	3.2.	C-AQ-0001R	
	3.3.	C-AQ-0002R	
	3.4.	C-AQ-0003R	
	3.5.	C-AQ-0004R	
	3.6.	C-DL-0012S	33
	3.7.	C-DL-0064M	37
	3.8.	C-DM-0006M-ILED	
	3.9.	C-DM-0006M-ULED	45
	3.10.	C-DM-0402M-RLC	48
	3.11.	C-HC-0201F-E	57
	3.12.	C-HM-0308M	64
	3.13.	C-HM-1113M	69
	3.14.	C-HM-1121M	74
	3.15.	C-IB-1800M	79
	3.16.	C-IR-0202S	85
	3.17.	C-IR-0203M	91
	3.18.	C-IT-0100H-A	
	3.19.	C-IT-0100H-P	101
	3.20.	C-IT-0200I	104
	3.21.	C-IT-0200R	108
	3.22.	C-IT-0200S	111
	3.23.	C-IT-0504S	116
	3.24.	C-IT-0908S	122
	3.25.	C-OR-0008M	128
	3.26.	C-OR-0202B	131
	3.27.	C-RC-0002R	135
	3.28.	C-RC-0003R	139
	3.29.	C-RI-0401S	146
	3.30.	C-WG-0503S	152
	3.31.	C-WS-0200R	158
	3.32.	C-WS-0400R	161
	3.33.	C-WS-0200R-Logus	164
	3.34.	C-WS-0400R-Logus	170
	3.35.	RCM2-1	176
4.	ΑΤΤΑ	CHMENTS	180

1. INTRODUCTION

The manual is intended to inform the user of PLC Tecomat Foxtrot with modules working on the CIB bus. It provides information about the basic parameters of modules and their operation.CIB, including their individual elements, is referred under the trademark **CFox**.

1.1. CIB - Common Installation Bus

CIB - Common Installation Bus is two wire installation bus. CIB modules are both powered and communicated over this two-wire bus.

The CIB bus has always one control master and up to 32 slave modules (units). Master can be an internal part of the central module or can be as expansion unit on the DIN rail in the control panel. CIB peripheral modules are delivered in several form factors - for interior installations as well as for DIN rail installation

Number of wires ^{*)}	2				
Cross-section of wires *)	min. 0.8 mm ²				
Topology ^{*)}	Arbitrary				
Distance of the master from CIB slave	max. 500m				
module					
Typical Voltage	24V DC (no backup)				
	27.2V DC (backup)				
Tolerance of the supply voltage	20.4 ÷ 30V				
The baud rate	19,2 kb/s				

Tab. 1.1 Basic parameters of the CIB bus

It is recommended for CIB installation to use the twisted pair cable with the wire cross section at least 0,8 mm², e.g., J-Y(St)Y1x2x0,8. The cross section and topology is necessary to choose with respect to the voltage drop along the cable - according to amount and type of CIB modules.

For more details and CIB application examples see. *Příručka projektanta systemů* Foxtrot (TXV 004 11).

NOTE : With respect with CIB bus the term CIB peripheral module is equal with the term CIB peripheral unit.

2. CIB MASTER

CIB master communicates with CIB peripheral modules and transfers the data into the central module over the system bus TCL2. The CIB master is available in two versions. As the internal master or as external master. Internal master is inherent part of the central modules Tecomat Foxtrot (CP-10xx), where it is referred as module CF-1140, (or MI2-01M). External master is connected to the Foxtrot over the system communication bus TCL2 and is referred as module CF-1141, (or MI2-02M).

Internal master contain 1 CIB branch (for up to 32 CIB slave modules), internal master of CP-1000/1001 and external master contains 2 CIB branches (2x up to 32 CIB slave modules). Beside to internal CIB master CPU Tecomat Foxtrot enables to serve up to 4 external CIB masters.

Since 2011 the family of CPU Tecomat Foxtrot are modernized. From the point of view of the CIB buses the modernization brings replacement of the former MI2-01M a MI2-02M masters by the new one with the names CF-1140 and CF-1141 (for comparison see more below).

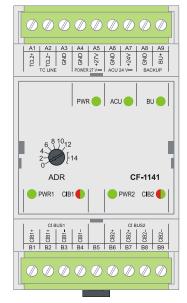


Fig. 2.1 Front view CF-1141

CF-1141						
System bus	TCL2					
The installation bus	2x CIB (2x up to 32 modules)					
Load of CIB line	max. 1A (for each CIB line)					
Nominal Input Voltage	24V and 27.2V DC					
Tolerance of the input voltage	20.4 30V DC					
Backup accumulator voltage	24V DC					
Max. Load	60W					
Self consumption	24mA					
Dimensions	52 x 100 x 60mm					
Weight	120g					
Operating temperature	0 +70°C					
Storage temperature	-25 +85°C					
Operation position	arbitrary					
Type of operation	continuous					
Installation	on DIN rail					
Connecting	Removable screw type terminal					
Cross-section of wires	max. 2.5mm ²					

Module CF-1141 provides a full internal power for CIB lines (it contain internal decoupling element for load capacity of 1A). Module also allows connecting and charging the backup battery that can power both the CIB lines as well as the PLC central module

(the output terminals BACKUP). For connection see following chapter *Connection of the CIB line to the master.*

Terminal	Signal	Description
A1	TCL2+	data signal of the system bus TCL2
A2	TCL2-	data signal of the system bus TCL2
A3,A4,A6,A8	GND	ground terminal
+27V		power supply 24V DC (bus without back-up)
A5		27.2V DC (bus with back-up)
A7	+24V	power from the backup battery 24V DC
A9	BU+	back-up power supply 24 / 27V DC (BACKUP)
B1, B2	CIB1+	CIB line 1
B3, B4	CIB1-	CIB line 1
B6, B7	CIB2+	CIB line 2
B8, B9	CIB2-	CIB line 2

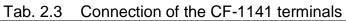


Fig.2.2 Front view MI2-02M

Tab. 2.4 Basic parameters of MI2-02M

MI2-02M							
System bus	TCL2						
The installation bus	2x CIB (2x up to 32 modules)						
Nominal input voltage (SELV) / own	24V a 27.2V DC / 25mA from the bus CIB						
consumption							
Tolerance of the input voltage	20.4 30V DC						
Max. load	2.5W						
Galvanic isolation	No						
Dimensions	90 x 18 x 65mm						
Weight	75g						
Operating temperature	-20 +55°C						
Storage temperature	-30 +70°C						
Electrical strength	according to EN 60950						
Degree of protection	IP 30						
Overvoltage category							
Degree of pollution according EN 61131-2	2						
Operating position	arbitrary						
Installation	on DIN rail						

Connecting	screw type terminals
Cross-section of wires	max. 2.5mm ²

Module MI2-02M does not contain the decoupling element to power the CIB lines. Lines have to be supplied externally by using decoupling modules, see chap. <u>2.3</u> *Supplying of the CIB bus.*

Tab. 2.5 Connection of the MI2-02 terminals

Signal	Description
TCL2+	data signal of the system bus TCL2
TCL2-	data signal of the system bus TCL2
GND	signal ground
CIB1+	CIB line 1
CIB1-	CIB line 1
CIB2+	CIB line 2
CIB2-	CIB line 2

Connecting the internal master module to the PLC TECOMAT Foxtrot

Connecting the internal master (CF-1140 or MI2-01M) is done by internal circuitry of CPU without any additional outside interconnections.

Connecting the external master module to the PLC TECOMAT Foxtrot

The external master (CF-1141 or MI2-02M) is connected to the PLC Foxtrot via the interface circuits on terminals A1 to A3 marked as TC LINE.

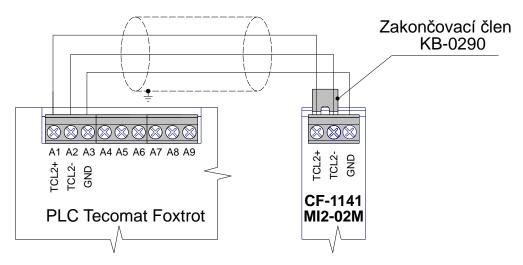


Fig. 2.3 Connecting the external master module to the PLC TECOMAT Foxtrot

On the PLC side the communication line TCL2 is terminated inside the PLC module. On the side of master module it is necessary to do the termination. This is achieved by using a terminating element KB-0290 (TXN 102 90) connected between the terminals TCL2+ and TCL2-.The terminator is a part of package PLC Foxtrot. If there are other modules the communication line TCL2, termination has to be placed at the end of the whole line!!

Connecting CIB line to the master module

CIB line is connected to the master module via terminals + CIB and CIB-.If the CIB line has to be powered by an external power source, the power source must be separated from the CIB line by the decoupling module C-BS-0001 or BPS2-02M. Some CIB lines are fully (or partially) supplied directly from internal circuits of the master (see chap. <u>2.3</u> Supplying of the CIB bus).

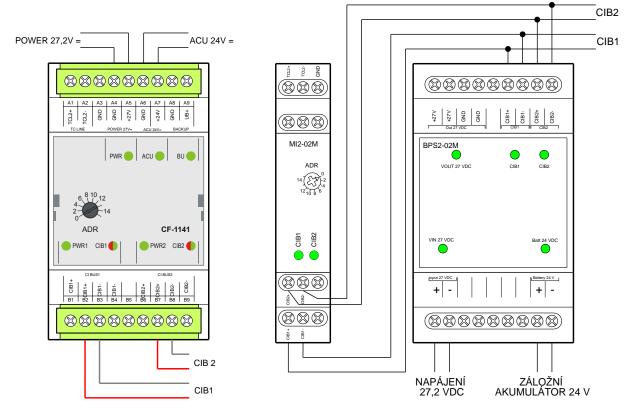


Fig.2.4 Connecting CF-1141 to CIB line

Fig.2.5 Connecting MI2-02M to CIB line by BPS2-02M

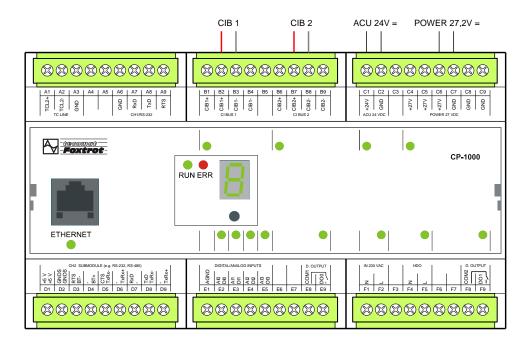


Fig.2.6 Connecting of the basic module Foxtrot CP-1000 to the CIB line

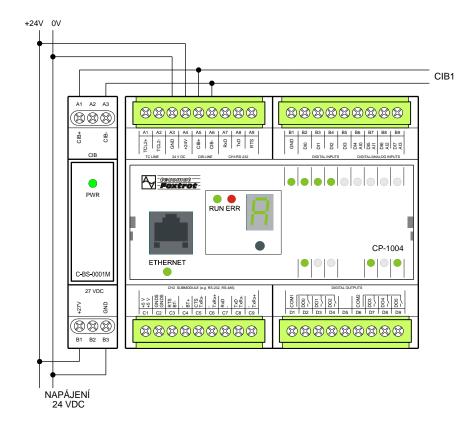


Fig. 2.7 Connecting of the basic module Foxtrot CP-1004 to the CIB line with C-BS-0001M

Communication parameters

Master module communicates with the CPU by system messages of the bus TCL2. Parameters of communication are fixed by the specification of the TCL2 bus.

In terms of addressing on the TCL2 the internal CIB master is firmly mapped in the frame number 0, slot 2

For CIB lines of external master its communication address is set by the rotary switch on the front cover of the module. By setting its address, the module is uniquely addressed on TCL2 bus. This addressing must be done with respect to the addresses of other participants TCL2 to avoid address collisions. So the external CIB master module (resp. its two CIB lines) will be mapped always in the frame 3. Address of the line CIB1 of respected master will be equal to the position of the rotary switch, address of the line CIB2 of the same master will equal to the position of rotary switch incremented by +1.

Indicators

For the internal master no indicators are on the front panel of CPU.

On the front panel of external master there are two LED indicators(CIB1 a CIB2), each for the signalisation of the traffic on respective CIB line. In case of still green light of LED the CIB is in HLAT mode. (No connected module is served). In case of blinking green light of LED, module is in RUN mode (slave modules are serviced) and all serviced slave modules communicates. Blinking red among the green blinking in RUN mode indicates the communication failure of some slave module on the line.

On the external master CF-1141 there are additional 5 LED indicators (PWR, ACU, BU, PWR1, PWR2) monitoring the voltage level of the individual sections of the master. In the normal state all 5 LED still light. In case of voltage drop below the 22V limit, corresponding LED will blink (or turns off completely).

Limitations and comparison of master module MI2-01M with CF-1140 and MI2-02M with CF-1141

Modules **MI2-01M** and **MI2-02M** enables to serve **up to 32** CIB slave modules on one CIB line. Because of the limits of module memory, however there are some limitations in the real number of slave modules. In practice, there may be cases where these masters are actually able to serve fewer modules than the specified maximum value of 32 modules on one line CIB. These cases occur particularly in the cases where there is e.g. vast majority of the modules of the same type on one CIB line.

Modules **CF-1140** and **CF-1141** have much higher memory capacity, which enable to serve **really32** slave modules on one CIB line.

Information about the used memory capacity of the specific CIB line can be seen on the bar graph in *unit/device manager* (see. fig. 2.9).

2.1. Master configuration

Adding new master in the PLC Tecomat Foxtrot configuration is done by dialog *HW Configuration* in *Project Manager*. CPU Tecomat Foxtrot allows handling one CIB line using the internal master (CF-1140, MI2-01M) and up to 8 external CIB lines using 4 external masters (both external masters CF-1141 and MI2-02M contain 2 CIB lines).

Activation of the operator's internal master is done in menu Central module.

Manažer projektu					
Adresa PLC: 0	L Po <u>u</u> žít				
 Typ připojení: Nepřipojeno Společná nastavení 	į ⊙ <u>V</u> ytvářet konfi	g. soubor PLC	C Konfiguraci nelze měnit		
Programové moduly					
Nastavení složek	Foxtrot				
E Hw	I OAUOI	.			ALTERNA CONTRACTOR CON
— Výběr řady PLC — Konfigurace HW	Centrální modul	Externí I/O moduly Ex	kterní CIB Ope	rátorské pane	ely
Síť PLC - logické propojení		Typ modulu	Jméno	Verze	+24V CIB1+
E Sw	CPU	😨 🧹 CP-1005			GND CIBI-
Program		🐼 🗸MI2-01M			TCL2 CH1
- Cpm		-IR-1056			TCL2+ I/O
 Překladač Posílání souborů do PLC 					(\$20202020) (\$202020)
Prostředí					
- Ovládání PLC					······
Preference					8
- Volby text. editoru					Endour wood CP1024
- Barvy textového editoru					
– Zobrazení zdroj, kódu relec					(200506050) (00000000)
– Konfigurace HW souborů					CH2 I/O
– Doplňování kódu	,				1.0
⊡ · Dokumentace	🛠 Přísluše	netví			
 Informace o použitém HW 	23.1 Histose	113(41			

Fig. 2.8 Activation of serving of the internal CIB master

Adding new external master in the PLC Tecomat Foxtrot configuration is done by the same dialog in menu *External CIB*.

Adresa PLC: 0	A Po <u>u</u> žít						
	į ⊙ ⊻ytvářet konfig	g. soubor PLC			C Konfiguraci nelze m	ěnit	
- Programové moduly		_					
Nastavení složek	Foxtrot	c					
- Hw					Openand Latitude Openand Latitude Openand Latitude Openand Latitude Openand Latitude Openand Latitude Openand Latitude TextRess TextRess TextRess TextRess TextRess TextRess TextRess TextRess TextRess TextRess TextRess TextRess		
 Výběr řady PLC Konfigurace HW 	Centrální modul	Externí I/O moduly	Externí CIB 🛛 🕻)perátorské pan	ely		
Síť PLC - logické propojení	Adresa	Typ modulu	Jméno	Verze	Objednací číslo		
∃- Sw	MIO	🟹 🧹 МІ2-02М			TXN 131 28		
Program	MI2	🗸 🖌 MI2-02M			TXN 131 28	1	
- Cpm		X MI2-02M			TXN 131 28		
 Překladač Posílání souborů do PLC 		X MI2-02M			TXN 131 28		
Prostředí					174110120		
- Ovládání PLC							
Preference							
- Volby text. editoru							
Barvy textového editoru							
– Zobrazení zdroj, kódu relec							
- Konfigurace HW souborů							
– Doplňování kódu	J						
Dokumentace							
- Informace o použitém HW	👷 Příslušei	nstvi					

Fig. 2.9 Activation of serving of the external CIB master

SW configuration of master to serve the modules on CIB bus is performed in dialog *Unit/device manager*. Dialog is available in the window *HW Configuration* after the click on icon \overline{S} on the line of the master.

Správ	ce jec	lnotek/z	ařízení					×
MI	Т		MIO	MI2	ľ	MI4	MI6	
CIB	1	CIB2					-	
ID		HW adres	1 WSB2-40 - WSB_chodba Digitální vstup universal dig. inputs Název jednotky/zařízení ↓ Digitální výstup LED indicators Název jednotky Název jednotky 1 SA2-02M - SA_chodba Název jednotky 1452 Digitální výstup button on module universal rele outputs 1452 È Rozšířené nastavení Visualizace vstupů Exportovat pro visualizaci Pojmenování / alias WSB_chodba_IN Visualizace výstupů Exportovat pro visualizaci Pojmenování / alias WSB_chodba_OUT					
	1	1452	1		-			Výběr jednotky/zařízení
				Digitální výstup		LED indicators	lts	
								WSB_chodba
	2	C32A	1	Digitální vstup	-	button on module	outs	Visualizace výstupů Visualizaci Pojmenování / alias
K		zit včechna	a zařízení všec	iii				
	20018/	ac vsecilla	3 20112011 VSBU	i jednotek				
	Přic	lat jednotk	κ μ	Vymazat jednotku		Vymazat vše		Načíst konfiguraci z CPU
∏ Ва	ázová	adresa zór	n	0		/	ок	🗙 Zrušit 🛛 🕺 Nápověda

Fig. 2.10 SW configuration of the CIB master

CIB modules can be added on the list manually by the button Add the unit, or automatically by the button Read the configuration from CPU. Remove module by the button Delete unit. Removing all modules can be done by button Delete all. Then it shows

the option to remove all units from the actual CIB line, from the current CIB master or all units from all masters.

At the top of the window right next to the name of the line of selected CIB master is a colour bar graph indicating the usage of memory of the respective CIB lines. If the bar is green the memory capacity for the line is sufficient. If the bar changes the colour for yellow, the memory capacity is near to the limit. It is warning status. If the bar changes the colour for red, the memory capacity is overflow. In such case the line is not able to serve requirements of CIB modules on the line and some module has to be removed from CIB line.

Bar graphs next to the names of individual masters display only to the occupation of the CIB line, disregarding the memory capacity of the line (graph is still green).

HW address of CIB module

Fix address is assigned to the module during the manufacturing process and is written on the cover of the module. CIB address is 4-digit code in hexadecimal format. On the same CIB line cannot be more units with the same HW address!!!! HW address 0000 is dedicated one. (It is excluded from the CIB services).Assignment of the address 0000 is used for temporary withdrawal unit from service of CIB master (while the I/O unit variables stay kept in the structure of the master CIB).

Name of the module

It is possible to enter user identification of the module. Entered text will be used as prefix of the structured data of the module.

Advanced settings

For modules which allows extended user configuration button *Advanced settings* is available. Press the button to activate the dialog offering other properties of the module.

Naming / alias

You can specify a symbolic name under which structure of inputs/outputs of the module will be available in the user program and also in the visualization (SCADA) environment.

Export for visualisation

When checking the item - data structure will be included in the export public file used as input file for visualization software.

In terms of service each CIB module is divided into devices (input, output, digital, analogue,) and the device is further divided into specific inputs / outputs (digital input, digital output, analog input,).

Show all devices of all modules

Checking item the tree branch units of equipment will be unpacked. Checking box **Use device** of the optional device enables to activate or deactivate it.

Base address of the zone

Checking the item enables to enter the absolute position of the beginning of the CIB line in the stack.

2.2. The structure of the transmitted data

CIB master reserves data area in the stack of CPU in which the data transmitted from/to, status and fault zone CIB modules are available. Structure of the data area is evident from panel *Setting I/O* in Mosaic environment. Panel is available after pressing icon **10** in toolbar.

IEC 💑 💑 💑 DEC EXP H	IEX BIN STR			8:	3 S102 =	\$00	Data 0	K Bun
					0 0.02	****	0000	
O RMO RM3								
0 CP-1005 2 MI2-01M 3 IR-1	056							
Struktura dat		Úplný zápis	Alias 🖣	Svorka	Abs./délka [®]	Hodnota	Fixace	Poznámk
Statistic_MI_CIB1 : TCHStatistic	🔶 🔶	r0_p2_Statistic_MI_CIB1			XX0 / 10			
Control_MI_CIB1 : TCHControl	-	r0_p2_Control_MI_CIB1			%Y0/2	\$0000		
■ ID1_IN : TMI_CIB1_ID1_IN	(PUBLIC)	MI_CIB1_IN~ID1_IN	WSB_chodba_IN					
BTN : TCIB_WSB_BTN4		MI_CIB1_IN~ID1_IN~BTN				\$00		
UP1 : BOOL	-	MI_CIB1_IN~ID1_IN~BTN~UP1			%R4.0	0		
-DOWN1 : BOOL	-	MI_CIB1_IN~ID1_IN~BTN~DOWN1			%R4.1	0		
UP2 : BOOL	-	MI_CIB1_IN~ID1_IN~BTN~UP2			%R4.2	0		
-DOWN2 : BOOL	-	MI_CIB1_IN~ID1_IN~BTN~DOWN2			%R4.3	0		
THERM : REAL	-	MI_CIB1_IN~ID1_IN~THERM			%RF5	0		
∃ID1_OUT : TMI_CIB1_ID1_OUT	(PUBLIC)	MI_CIB1_OUT~ID1_OUT	WSB_chodba_OUT			\$00		
HED : TCIB_WSB_LED4		MI_CIB1_OUT~ID1_OUT~LED				\$00		
-GREEN1 : BOOL	-	MI_CIB1_OUT~ID1_OUT~LED~GREEN1			%R10.0	0		
-RED1 : BOOL	-	MI_CIB1_OUT~ID1_OUT~LED~RED1			%R10.1	0		
-GREEN2 : BOOL	–	MI_CIB1_OUT~ID1_OUT~LED~GREEN2			%R10.2	0		
RED2 : BOOL	–	MI_CIB1_OUT~ID1_OUT~LED~RED2			%R10.3	0		
ID2_IN : TMI_CIB1_ID2_IN	(PUBLIC)	MI_CIB1_IN~ID2_IN	SA_chodba_IN			\$00		
⊨- SW : TCIB_SW2		MI_CIB1_IN~ID2_IN~SW				\$00		
- SW1 : BOOL	-	MI_CIB1_IN~ID2_IN~SW~SW1			%R9.0	0		
-SW2 : BOOL	-	MI_CIB1_IN~ID2_IN~SW~SW2			%R9.1	0		
DID2_OUT : TMI_CIB1_ID2_OUT	(PUBLIC)	MI_CIB1_OUT~ID2_OUT	SA_chodba_OUT			\$00		
BRE : TCIB_RE2		MI_CIB1_OUT~ID2_OUT~RE				\$00		
-RE1 : BOOL	-	MI_CIB1_OUT~ID2_OUT~RE~RE1			%R11.0	0		
RE2 : BOOL	-	MI_CIB1_OUT~ID2_OUT~RE~RE2			%B11.1	0		
INE_STAT_MI_CIB1 : ARRAY [13	2] OF USINT	INE_STAT_MI_CIB1			%R12			
INE_ERR_MI_CIB1 : ARRAY [132] OF USINT 🛛 📕	INE_ERR_MI_CIB1			%R44			
< []]								
CIB1								

Fig. 2.11 The structure of the transmitted data

MIx_CIBx_IN_[], MIx_CIBx_OUT_[]

Zone of input data *MIx_CIBx_IN_[]* and zone of output data *MIx_CIBx_OUT_[]* is structured into items *IDx_IN* and *IDx_OUT* in the same order as the CIB modules are inserted during the configuration of the CIB line.

Data are available for the user program either under the automatically generated variable names (column *Full entry*), or under the user name assigned in the *Unit/Device manager* during configuration (column *Alias*).

Before transmission to/from the bus CIB some input/output data are automatically converted to/from other format for efficient transmission over the CIB bus, but in the stack they are accessible in the normal format.

INE_STAT_MIx_CIBx []

Status zone *INE_STAT_MIx_CIBx[]* contains the communication status of each CIB module.

	NET	-	-	REI	HS	ADR	COM	INI	
Bit	7	6	5	4	3	2	1	0	
	INI	 unit initialization status 1 - unit is initialized 0 - unit is not initialized 							
	СОМ	 unit communication status 1 - unit communicates 0 - unit does not communicate 							
	ADR	 unit addressing status 1 - unit addressed successfully 0 - unit is not addressed 							
	REI	 unit reinitialization status (after communication failure) 1 - unit is reinitializing 0 - unit is running 							
	NET	 unit service status 1 - unit is serviced 0 - unit is not serviced 							
	HS	- service signature (for diagnostic purposes)							

INE_ERR_MIx_CIBx[]

Fault zone *INE_ERR_MIx_CIBx[]* indicates the number of failed communications with each CIB units. If the relevant variable contains zero value, the communication with the unit is OK (without communication failure). *INE_ERR_MIx_CIBx* variables are of type byte, so the number of errors is counted until the value 255, then the counter will rollover to a new error counting from the value 0.

2.3. Power CIB bus

CIB bus has to be powered for the proper operation. Bus power supply can be provided internally directly from CIB master modules, or external power supply is required (see next Tab. below).

For backup power of CIB bus the switching power supply **is recommended:PS2-60/27** (27.2V DC, 60W, designed to recharge batteries). For not backup power of CIB buses it is possible to use switching power supply **DR-60-24** (24V DC, 60W). In the case of external power CIB bus options for proper operation is always **necessary** so separate the impedance of the power supply from the CIB bus by decoupling module C-BS-0001M or BPS2-02M.I the case of internal power CIB bus (e.g. from CF-1141 master module, or from CP-1000/1001 basic module) it is not necessary any additional decoupling. Decoupling is provided directly by these modules.

Module C-BS-0001 provides decoupling of the power supply for one CIB line.

Module BPS2-002M provides decoupling of the power supply for two CIB lines. On the module there is also available direct output voltage to supply the CPU and its peripherals. The module also allows connecting and charging the backup battery that can power both the CPU and CIB lines in case of failure of main power line.

	CP-1000 ¹	CP-1004 ⁴ CP-1005 ³ CP-1006 ² CP-1008 ²	CP-1014 ⁴ CP-1015 ³ CP-1016 ² CP-1018 ²	CP-1020 1	CP-1026 ² CP-1028 ²	CP-1036 ² CP-1038 ²
CIB Bus - internal lines	2	1	1	2	1	1
 more lines ⁵ by the external modules MI2-02M ³ and CF-1141 ¹ 			٤	3		

Tab. 2.6 Number of CIB lines in CPU Foxtrot and their power supply

¹ Modules provide **full** internal power of CIB lines from the master (max. load 1A on each CIB line), external power for CIB lines is not required.

² Modules provide **partial** power CIB lines from internal master for load up to 100mA. For higher load it is necessary to use additional power over the decoupling module.

⁴ Modules with internal master CF-1140 (models of year 2011 and later) include partial power lines from the CIB Master for internal consumption up to 100mA. For higher loads is necessary to use an external power supply connected over decoupling module. Modules with internal master MI2-01M (models before year 2010) do not contain any internal power of CIB lines. It is always necessary to use an external power supply connected over the decoupling module.

⁵ The total number of connected CIB lines and RFox networks interact. Total number of modules CF-1141, MI2-02M and RF-1131 can be max. 4.

³ Modules **do not contain** internal power supply of CIB lines. It is always necessary to use an external power supply connected over the decoupling module.

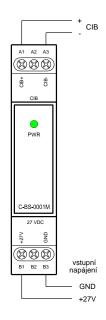
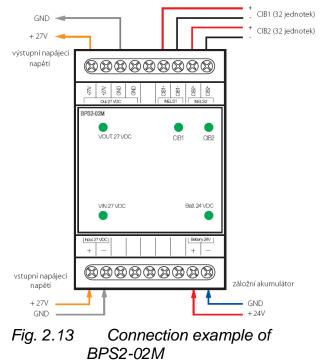



Fig. 2.12 Connection example C-BS-0001M

Power supply	
Input voltage	24 ÷ 27,2V DC
Output voltage for CIB	1x 24 ÷ 27,2V DC / 1A
Dimensions and weight	
Dimensions	90 × 18 × 60mm
Weight	120g
Operating and installation	on conditions
Operating temperature	0 ÷ +70 °C
Storage temperature	–25 ÷ +85 °C
Electrical strength	according to EN 60950
IP degree of protection	IP 20
acc. IEC 529	
Overvoltage category	111
Degree of pollution	2
according	
EN 61131-2	
Operating position	arbitrary
Installation	on DIN rail
Connecting	screw type terminals
Cross-section of wires	max. 2,5 mm ²

Tab. 2.7 Basic parameters C-BS-0001M

Tab. 2.8 Basic parameters BPS2-02M

Power supply	
Input voltage	24 ÷ 27,2V DC
Output voltage for CIB	2x 24 ÷ 27,2V DC / 1A
Output voltage CPU	24 ÷ 27,2V DC / 1A
Input for AKU	24V (2x 12V in series)
The charging current	2A
AKU	
Dimensions and weight	
Dimensions	90 × 52 × 65mm
Weight	100g
Operating and installation	on conditions
Operating temperature	–20 ÷ +55 °C
Storage temperature	–30 ÷ +70 °C
Electrical strength	according to EN 60950
IP degree of protection acc. IEC 529	IP 20
Overvoltage category	
Degree of pollution	2
according	
EN 61131-2	
Operating position	arbitrary
Installation	on DIN rail
Connecting	screw type terminals
Cross-section of wires	max. 2,5 mm ²

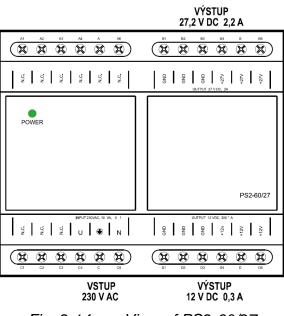


Fig. 2.14 View of PS2-60/27

Tab. 2.9 Basic parameters PS2-60/27

Power input				
Input voltage	230V AC; +15/-25 %			
Minimum input voltage	110V AC at reduced			
	power to 45 W			
Input voltage frequency	47–63 Hz			
Maximum power	106 VA			
consumption				
Input protection	T2,5/250V			

Power outputs				
Number of voltage	2			
levels	2			
Output voltage / current	27,2 V DC/ 0 ÷ 2,2 A			
of 1st level	27,2 V DO/ 0 · 2,2 A			
Output voltage/current	12 V DC/ 0 ÷ 0,3 A			
of the 2nd level	12 V DO, 0 · 0,3 A			
Total output power	max. 60W			
Protection against short	electronic			
circuit				
Efficiency	87%			
Dimensions and weight				
Dimensions	105 × 90 × 65mm			
Weight	340g			
Operating and installation	on conditions			
Operating temperature	–10 ÷ +60 °C			
Storage temperature	–40 ÷ +85 °C			
Air relative humidity	20 ÷ 90% without			
	condensation			
Electrical strength	according to EN 60950			
Protection class of	1			
appliance	according to EN 61140			
Degree of ingress	IP 20, IP40 covered in the			
protection	switchboard			
EN 60529				
Overvoltage category	11			
EN 60664-1				
Degree of pollution	2			
EN 60664-1				
Operating position	vertical			
Installation	on DIN rail in switchboard			
Connecting	screw type terminals			
Cross-section of wires	max. 2,5 mm ²			

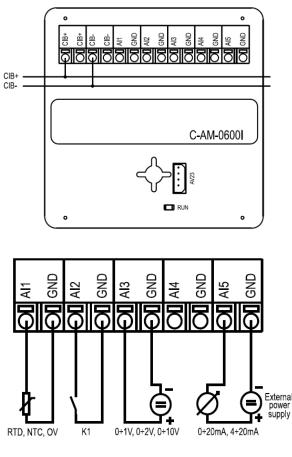
3. CIB UNITS, MODULES

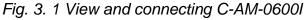
This chapter describes the parameters CIB units, examples of their connection, configuration procedure and description of the structures of data transmitted by units. Dialogs of unit configuration are available from the window *Unit/device manager* after pressing button Advanced settings.

Structures of transmitted data can be seen in the window *I/O setting* in Mosaic, see. fig. 2.4 Panel is available by clicking on the icon **10** in the toolbar.

Structure items have assigned symbolic names that begin always by characters IDx_IN and IDx_OUT, where x is number corresponding to the order of unit on the bus (column ID in Unit/device manager). In the column *Full notation* is always present concrete symbolic name for that item. If we want to use data in the user program we use either this symbolic name or we enter our own symbolic name that can then be used into the column *Alias*. We do not use absolute operands in any case since they can be changed after next compilation of the user program.

CIB modules of INELS II manufactured by ELKO EP s.r.o. Holešov, that can be connected to the CIB bus, are described in separate manual *Peripheral modules INELS II* on CIB bus (TXV 004 17).


ELKO EP, INELS and iNELS are registered trademarks of Elko EP s.r.o. Holešov.


3.1. C-AM-0600I

Measuring module contains five universal inputs and 1 interface for connecting the flow meter Taconova AV23. Universal inputs can be configured for measuring resistive temperature sensors, voltage and current or as binary inputs or as an input interface for counting pulses from energy meters (standard interface S0 according to IEC 61393 / DIN 43864). Interface for connecting a flow meter Taconova AV23 includes two measuring inputs, one for the evaluation of the flow and one for evaluating the temperature of the reference medium.

The module is housed in a plastic box with increased protection IP55, for installation on the wall or on the cover of the device or panel.

Under the plastic cover of the module is placed LED indicator. After connecting the module to the CIB line (power connected) the green RUN LED lights still. If the module is served by the CIB (it communicates), green RUN LED flashes regularly.

Interface for flow meter Taconova AV23				
Supply voltage	5V DC			
Typical power	3mA			
consumption from				
CIB				
Input resistance	>14kΩ			
Range of	0.5 ÷ 3.5V ~ 1 ÷ 12 l/min,			
measurement	~ 2 ÷ 40 l/min,			
	~ 0 ÷ 100 °C			
Measurement error	±0.5%			

Power supply				
Power supply and	24 V (27 V) from the			
communication	CIB			
Max. power	80mA			
consumption				
Dimensions and weight				
Dimensions	104 × 85 × 37mm			
Weight	65 g			

Universal inputs			
Quantity	5		
Optional input type	analog, binary, pulse		
	counter		
- Analog			
Resistance ranges	Pt1000 (-90 ÷ +320 °C), Ni1000 (-60 ÷ +200 °C), NTC12k (-40 ÷ +125 °C), KTY81-121 (-55 ÷ +125 °C) OV200k (0 ÷ 200kΩ), OV450k (0 ÷ 450kΩ)		
Voltage ranges	0 ÷ 10V, 0 ÷ 2V, 0 ÷ 1V		
Current ranges	0 ÷ 20mA, 4 ÷ 20mA		
Accuracy	±0.5% of full range, ±1% (NTC12k), ±10% (OV200k,OV450k) ¹⁾²		
Period of refresh Al	typically 5s		
- Binary ³⁾			
Delay log.0 -> log.1	10ms		
Delay log.1 -> log.0	500ms		
Minimal pulse width	30ms		
Type of binary input ⁴⁾	Active or passive		
 Passive Input voltage 	7.4V from internal power supply		
 Active Input resistance 	64.9kΩ		
 Pulse counter (state 61393) 	ndard interface S0, IEC		
Reference voltage typ.	24V DC for Al1 ÷Al4, 7.4V for Al5 ⁵⁾		
Max. input current	14mA		
Min. pulse width	30ms		
Max. pulse frequency	20Hz		
Max. switch resistance	800Ω in closed state		
Operating and installat			
Operating temperature	-10 ÷ +55 °C		
Storage temperature	-25 ÷ +70 °C		
IP degree of protection acc. IEC 529	IP55		
Operating position	arbitrary		
Type of operation	continuous		
Installation			
	wall (surface) mounting		
Туре	wall (Surface) mounting		
Туре	wall (surface) mounting Push-in terminals,		

1) For resistors over 50kΩ the resolution of AD converter decreases considerably thus increasing measurement error. These ranges are only complementary.

2) Range OV450k can only be set on input AI5.

3) Binary inputs do not have their own configuration dialog. They are set by the configuration dialog of the corresponding analog input.

4) Active binary input corresponds to the range of 0 ÷ 10V. Passive binary input corresponds to ranges Pt1000, Ni1000, KTY81-121.

5) Input AI5 as pulse counter has to use reduced voltage that does not meet the standard interface S0.

3.1.1. Configuration

C-AM-0600I			X
Nastavení analogových vstup	ů		
Typ vstupu AI1	Pt1000 W100 = 1,385	Filtrace vstupu AI1	0,0 🚖
Typ vstupu AI2	Pt1000 W100 = 1,385	Filtrace vstupu AI2	0,0 🚖
		1	
Typ vstupu AI3	Pt1000 W100 = 1,385	Filtrace vstupu AI3	0,0 👤
Typ vstupu AI4	Pt1000 W100 = 1,385	Filtrace vstupu AI4	0,0 🌩
Typ vstupu AI5	Pt1000 W100 = 1,385	Filtrace vstupu AI5	0,0 🜲
Průtokoměr AV23			
rozsah průtokoměru	rozsah průtokoměru 1-12 l/min 💌		
formát měření	měření průtoku v l/min 🔹		
	_		
		🖌 ок	🗶 Zrušit
			•••

Fig. 3.2 Module configuration

Input terminals of the module are **shared**, for more functions of inputs (devices). Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap.2.1 *Master configuration*, check the box *Show units, devices*

Type of input

```
Choosing the type of analog input:

Pt1000, W_{100} = 1,385, -90/+320°C

Pt1000, W_{100} = 1,391, -90/+320°C

Ni1000, W_{100} = 1,617, -60/+200°C

NTC 12k (negative thermistor, 12k\Omega at 25°C), -40/+125°C

KTY 81-121, -55/+125°C

0 ÷ 10V

0 ÷ 2V

0 ÷ 1V

0 ÷ 20mA

4 ÷ 20mA

4 ÷ 20mA

OV200k (0 ÷ 200k\Omega)

OV450k (0 ÷ 450k\Omega)

16-bit pulse counter, S0
```

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

- x the current value of the analog input
- y_t output
- y_{t-1} recent output
- -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Range of flow meter

Range selection of the connected flowmeter Taconova AV23:

1 ÷ 12 l/min 2 ÷ 40 l/min

Measurements format

Choosing the format in which the data from the flow meter Taconova AV23 will be presented:

l/min m³/h dm³/h

3.1.1. The structure of the transmitted data

The module contains a total of six devices, each of them can be individually activated / deactivated

-	device	1,	input,	1*STAT	(status of analog AI)
-	device	2,	input,	2*AI	(input AI1, AI2)
-	device	З,	input,	2*AI	(input AI3, AI4)
-	device	4,	input,	1*AI	(input AI5)
-	device	5,	input,	2*AI	(flow meter AV23)
-	device	6,	input,	5*DI	(binary inputs)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

CIB UNITS, MODULES

Struktura dat	Úplný zápis 🖣	Alias	⁴ Svorka ⁴	Abs./délka ⁴	Hodnota
DI_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
🖶 - STAT : TCIB_CAM0600I_STAT 🛛 🗛	MI_CIB1_IN~ID1_IN~STAT			%R4/2	
-Al1 : REAL	MI_CIB1_IN~ID1_IN~AI1			%RF6	
-AI2 : REAL	MI_CIB1_IN~ID1_IN~AI2			%RF10	
	MI_CIB1_IN~ID1_IN~AI3			%RF14	
-AI4 : REAL	MI_CIB1_IN~ID1_IN~AI4			%RF18	
-AI5 : REAL	MI_CIB1_IN~ID1_IN~AI5			%RF22	
-AV23 : TCIB_CAM06600I_AV23	MI_CIB1_IN~ID1_IN~AV23				
FLOW : REAL 🗛	MI_CIB1_IN~ID1_IN~AV23~FLOW			%RF26	
THERM : REAL 🗛	MI_CIB1_IN~ID1_IN~AV23~THERM			%RF30	
⊟-DI : TCIB_DI5	MI_CIB1_IN~ID1_IN~DI				
-DI1 : BOOL	MI_CIB1_IN~ID1_IN~DI~DI1			%R34.0	
— D12 : BOOL 🗛	MI_CIB1_IN~ID1_IN~DI~DI2			%R34.1	
—DI3 : BOOL 🗛	MI_CIB1_IN~ID1_IN~DI~DI3			%R34.2	
—DI4 : BOOL 🍒	MI_CIB1_IN~ID1_IN~DI~DI4			%R34.3	
DI5 : BOOL	MI_CIB1_IN~ID1_IN~DI~DI5			%R34.4	

Fig. 3.3	The structure of the transmitted data
----------	---------------------------------------

Input data

STAT	Al1		Al2	AI3	Al	1	AI5	AV23	DI		
STAT - status byte of analog inputs (16x type bool)											
VLD4 OUF4 VLD3 OUF3 VLD2 OUF2 VLD1 OUF1											
Bit .7 .6 .5 .4 .3 .2 .1 .0											
VLD6b OUF6b VLD6a OUF6a VLD5 OUF5											
	Bit	.15	.14	.13	.12	.11	.10	.9	.8		
	VLDx OUF6a VLD6a OUF6b	- validi - overf - validi - over	ity of rea low / un ity of rea flow / ur	ading of a derflow o ading the nderflow	flow me	of flow ter FLC of ther	x meter F OW rmomete	LOW r THERM			
Alx -				t Alx, nu A], [pulse		pulse	s of cou	nter (type	real) [°C],		
AV23.FLOW -	media	flow of	flow me	eter AV2	3 (type r	eal) [l/n	nin, m ³ /h	, dm³/h]			
AV23.THERM - media temperature of flow meter AV23 (type real) [°C]											
DI -	<i>DI</i> - status of binary inputs (8x type bool)										
		-	-	-	DI5	DI4	DI3	DI2	DI1		
	Bit	.7	.6	.5	.4	.3	.2	.1	.0		

DIx - status of binary input DIx

3.2. C-AQ-0001R

Module for interior mounting for measuring the concentration of carbon dioxide CO_2 in the air. The module contains a dual channel measurement system using optical attenuation of infrared radiation, depending on the concentration of CO_2 in the air (based on NDIR - NonDispersive InfraRed sensor). The module allows to perform automatic calibration, which ensures long life and stability of the sensor. The module contains a auxiliary temperature sensor (measuring the temperature inside the module does not correspond to the ambient temperature module!!!).

Mechanical design of the module allows easy wall mounting.

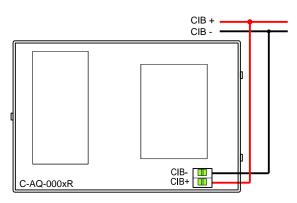


Fig. 3. 4 View and connecting C-AQ-0001R

3.2.1. Configuration

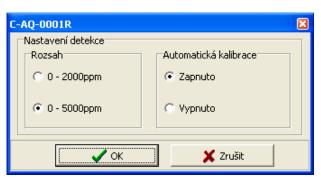


Fig. 3.5 Module configuration

Measuring input CO ₂	
The selectable ranges	300 ÷ 2000 ppm
, i i i i i i i i i i i i i i i i i i i	300 ÷ 5000 ppm
Sensor warming after	2 min
switch on	
Resolution	1 ppm
Accuracy	50 ppm (1%)
Long term stability	50 ppm / year
Influence of the	1,6 % / kPa
pressure	
Operating humidity	max. 95 % non condensed
Calibration	From the factory +
	automatic
The lifetime of a	Typ. 10 years
measuring sensor	
auxiliary temperature in	
Sensor type	Thermistor NTC 12k,
Denne	internal
Range	0 ÷ +50 °C
Accuracy	0,8 °C
Power supply	(0.4)/((0.7)) from the OID
Power supply and	24 V (27 V) from the CIB
communication	90 mA
Nominal power	90 MA
consumption Dimensions and weight	
Dimensions	125 × 83 × 36mm
Weight	300g
Operating and installation	
Operating temperature	0 ÷ +40 °C
Storage temperature	-20 ÷ +60 °C
IP degree of protection	IP20
acc. IEC 529	11 20
Overvoltage category	111
Degree of pollution	2
according	-
EN 61313	
Operating position	arbitrary
Installation	on the wall
Connecting	screw type terminals
Cross-section of wires	max. 2,5 mm ²

Tab. 3.2 Basic	parameters	C-AQ-0001R

Range

Setting the range of measuring sensor. You can choose between a range of 300÷2000ppm and 300÷5000ppm.

Automatic calibration

Checking the item *On* the module will perform regular automatic calibration of the measuring sensor during the operation.

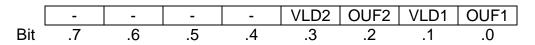
3.2.2. The structure of the transmitted data

Module contains 3 devices in total:

- devicei 1, input,	1*STAT	(status)
 device 2, input, 	1*AI	(CO2)
 device 3, input, 	1*AI	(internal thermometer)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

🛠 Nastavení V/V - Konfiguraci nelze měnit									
IEC 💑 💑 DEC EXP HEX BIN STR 🔢 🛅 5:2 S102=									
O RMO									
0 CP-1004 2 MI2-01M 3 IR-103	57								
Struktura dat	Úplný zápis	Alias ⁴ Sv	orka ^{ll} Abs./délka	Hodnota					
🗄 Statistic_MI_CIB1 💠 TCHStatistic 🛶	r0_p2_Statistic_MI_CIB1		XX0/10						
Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1		%Y0/2	\$0000					
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN								
⊟- STAT : TCIB_AI2_STAT	MI_CIB1_IN~ID1_IN~STAT			\$00					
🛛 🗌 – OUF1 : BOOL 🛛 🗛	MI_CIB1_IN~ID1_IN~STAT~OUF1		%R204.0	0					
-VLD1 : BOOL 🍒	MI_CIB1_IN~ID1_IN~STAT~VLD1		%R204.1	0					
-OUF2 : BOOL -	MI_CIB1_IN~ID1_IN~STAT~OUF2		%R204.2	0					
VLD2 : BOOL	MI_CIB1_IN~ID1_IN~STAT~VLD2		%R204.3	0					
	MI_CIB1_IN~ID1_IN~CO2		%RF205	0					
THERM : REAL	MI_CIB1_IN~ID1_IN~THERM		%RF209	0					


Fig. 3.6 The structure of the transmitted data

Input data

STAT	CO2	THERM

STAT

- status byte of analog inputs (8x type bool)

OUF1 - overflow of concentration of CO₂

VLD1 - validity of reading of concentration of CO_2 OUF2 - overflow / underflow of range of thermometer THERM VLD2- validity of reading the thermometer THERM

- CO₂ concentration CO₂ (type real) [ppm] (1ppm = 1part per million)
- *THERM* temperature of auxiliary internal sensor (type real) [°C]

3.3. C-AQ-0002R

Module for interior for measuring the presence of volatile gaseous pollutants (VOC - Volatile Organic Compounds) in the air. The detection is based on the electrochemical principle (conductivity measurement by selective semiconductor sensor). The module is particularly sensitive to toluene, hydrogen sulphide, ethanol, ammonia and hydrogen. In addition, you can also detect alcohol vapour, methane, propane, butane, natural gas and substances released from building materials, interior equipment. The module contains an auxiliary temperature sensor (measuring the temperature inside the module does not correspond to the ambient temperature module!!!).

Mechanical design of the module allows easy wall mounting.

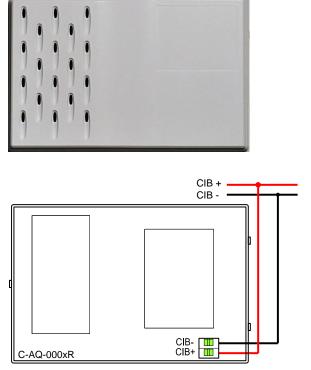


Fig. 3. 7 View and connection C-AQ-0002R

Fig. 3.8 Module configuration

VOC measuring input	
The selectable ranges	0 ÷ 5 ppm
_	0 ÷ 50 ppm
Sensor warming after	10 min
switch on	
auxiliary temperature in	
Sensor type	Thermistor NTC 12k,
	internal
Range	0 ÷ +50 °C
Resolution	0,1 °C
Accuracy	0,8 °C
Power supply	
Power supply and	24 V (27 V) from the CIB
communication	
Nominal power	80 mA
consumption	
Dimensions and weight	
Dimensions	125 × 83 × 36mm
Weight	300g
Operating and installati	
Operating temperature	0 ÷ +40 °C
Storage temperature	-20 ÷ +60 °C
IP degree of protection	IP20
acc. IEC 529	
Overvoltage category	111
Degree of pollution	2
according	
EN 61313	
Operating position	arbitrary
Installation	on the wall
Connecting	screw type terminals
Cross-section of wires	max. 2,5 mm ²

Tab. 3.3 Basic parameters C-AQ-0002R

Range

Selectable ranges. It is possible to select 0+5ppm and 0+50ppm.

Auto adaptive mode

Check box *On* the module will perform regular automatic adaptation of the measuring sensor.

3.3.2. The structure of the transmitted data

Module contains 3 devices in total:

-	device	1,	input,	1*STAT	(status)	
-	device	2,	input,	1*AI	(VOC)	
-	device	З,	input,	1*AI	(internal	temperature)

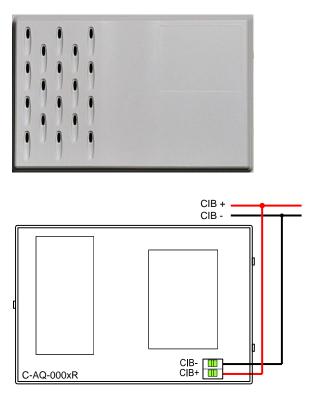
The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

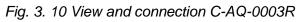
A Nastavení V/V - Konfiguraci nelze měnit								
IEC 💑 💑 DEC EXP HEX BIN STR 🔢 🛅 5:3 S								
O BM0								
0 CP-1004 2 MI2-01M 3 IR-105	57							
Struktura dat	Úplný zápis 🏾 🎙	Alias ⁴ Svo	rka ^{ll} Abs./délka	Hodnota				
🗄 Statistic_MI_CIB1 💠 TCHStatistic 🗛	r0_p2_Statistic_MI_CIB1		%×0/10					
E Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1		%Y0/2	\$0000				
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN							
⊨-STAT : TCIB_AI2_STAT	MI_CIB1_IN~ID1_IN~STAT			\$00				
🛛 🗌 🗕 OUF1 : BOOL 🛛 🗛	MI_CIB1_IN~ID1_IN~STAT~OUF1		%R204.0	0				
-VLD1 : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~VLD1		%R204.1	0				
-OUF2 : BOOL -	MI_CIB1_IN~ID1_IN~STAT~OUF2		%R204.2	0				
VLD2 : BOOL	MI_CIB1_IN~ID1_IN~STAT~VLD2		%R204.3	0				
-VOC : REAL	MI_CIB1_IN~ID1_IN~VOC		%RF205	0				
THERM : REAL	MI_CIB1_IN~ID1_IN~THERM		%RF209	0				

Fig. 3.9 The structure of the transmitted data

Input data

	STAT		VOC			TH			
STAT	- statu	s byte of	analog	inputs (8	sx type	bool)			
		-	-	-	-	VLD2	OUF2	VLD1	OUF1
	Bit	.7	.6	.5	.4	.3	.2	.1	.0
OUF1 - overflow of concentration of VOC									


VLD1 - validity of reading of concentration of VOC OUF2 - overflow / underflow of range of thermometer THERM VLD2- validity of reading the thermometer THERM


- *VOC* value of concentration of VOC (type real) [ppm] (1ppm = 1 part per million)
- *THERM* temperature of auxiliary internal sensor (type real) [°C]

3.4. C-AQ-0003R

Module for interior for measuring the presence of smoke (carbon monoxide and hydrogen) in the air. The detection is based on the electrochemical principle (conductivity measurement by selective semiconductor sensor). The module can be used for detection of leakage of gases methane, propane, butane and natural gas. The module contains an auxiliary temperature sensor (measuring the temperature inside the module does not correspond to the ambient temperature module!!!).

Mechanical design of the module allows easy wall mounting.

3.4.1. Configuration

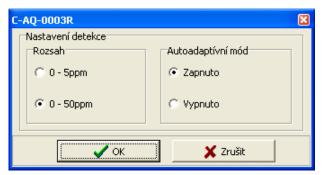


Fig. 3.11 Module configuration

Smoke measuring input	
The selectable ranges	0 ÷ 5 ppm
	0 ÷ 50 ppm
Sensor warming after	10 min
switch on	
auxiliary temperature in	
Sensor type	Thermistor NTC 12k,
	internal
Range	0 ÷ +50 °C
Resolution	0,1 °C
Accuracy	0,8 °C
Power supply	
Power supply and	24 V (27 V) from the CIB
communication	
Nominal power	80 mA
consumption	
Dimensions and weight	
Dimensions	125 × 83 × 36mm
Woight	300g
Weight	
Operating and installation	on conditions
Operating and installati	on conditions
Operating and installation	on conditions 0 ÷ +40 °C
Operating and installation Operating temperature Storage temperature	0 ÷ +40 °C -20 ÷ +60 °C
Operating and installation Operating temperature Storage temperature IP degree of protection	0 ÷ +40 °C -20 ÷ +60 °C
Operating and installation Operating temperature Storage temperature IP degree of protection acc. IEC 529	on conditions 0 ÷ +40 °C -20 ÷ +60 °C IP20
Operating and installation Operating temperature Storage temperature IP degree of protection acc. IEC 529 Overvoltage category	on conditions 0 ÷ +40 °C -20 ÷ +60 °C IP20 III
Operating and installati Operating temperature Storage temperature IP degree of protection acc. IEC 529 Overvoltage category Degree of pollution	on conditions 0 ÷ +40 °C -20 ÷ +60 °C IP20 III
Operating and installati Operating temperature Storage temperature IP degree of protection acc. IEC 529 Overvoltage category Degree of pollution according	on conditions 0 ÷ +40 °C -20 ÷ +60 °C IP20 III
Operating and installati Operating temperature Storage temperature IP degree of protection acc. IEC 529 Overvoltage category Degree of pollution according EN 61313	0 ÷ +40 °C -20 ÷ +60 °C IP20 III 2
Operating and installati Operating temperature Storage temperature IP degree of protection acc. IEC 529 Overvoltage category Degree of pollution according EN 61313 Operating position	on conditions 0 ÷ +40 °C -20 ÷ +60 °C IP20 III 2 arbitrary

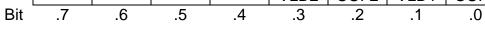
Tab. 3.4 Basic parameters C-AQ-0003R

Range

Setting the range of measuring sensor. You can choose between a range of 0÷5ppm and 0÷50ppm.

Auto adaptive mode

Checking box *On* the module will perform regular automatic adaptation of measuring sensor.


3.4.2. The structure of the transmitted data

Module contains 3 devices in total:

- device 1,	input,	1*STAT	(status)	
- device 2,	input,	1*AI	(smoke)	
- device 3,	input,	1*AI	(internal	thermometer)

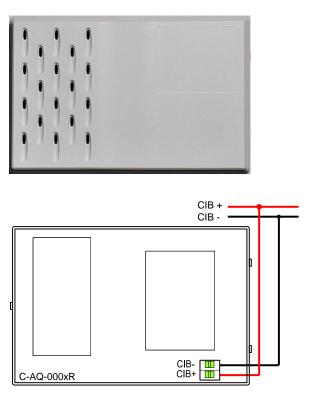
The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon $\boxed{10}$ in toolbar.

IEC 💑 💑 💑 DEC EXP	HEX BIN STR 📑 🛅			5:0
○ RM0				
0 CP-1004 2 MI2-01M 3 IR-	-1057			
Struktura dat	Úplný zápis	Alias	Svorka ⁴ Abs./délka	Hodnota
Statistic_MI_CIB1 : TCHStatistic	: 🗛 r0_p2_Statistic_MI_CIB1		20/10	
Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1		%Y0/2	\$0000
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN			
È- STAT ∶TCIB_AI2_STAT	MI_CIB1_IN~ID1_IN~STAT			\$00
-OUF1 : BOOL	MI_CIB1_IN~ID1_IN~STAT~OUF		%R204.0	0
-VLD1 : BOOL	MI_CIB1_IN~ID1_IN~STAT~VLD1		%R204.1	0
-OUF2 : BOOL	MI_CIB1_IN~ID1_IN~STAT~OUF	2	%R204.2	0
VLD2 : BOOL	MI_CIB1_IN~ID1_IN~STAT~VLD2	2	%R204.3	0
-SMOKE : REAL	MI_CIB1_IN~ID1_IN~SMOKE		%RF205	0
THERM : BEAL	MI_CIB1_IN~ID1_IN~THERM		%RF209	0
Fig. 3.12	The structure of the tra	nsmitte	ed data	
Input data				
STAT	SMOKE	THE	RM	
AT - status byte o	f analog inputs (8x type boo	D		

OUF1 - overflow of concentration of SMOKE

VLD1 - validity of reading of concentration of SMOKE

OUF2 - overflow / underflow of range of thermometer THERM


VLD2- validity of reading the thermometer THERM


```
    MOKE - value of smoke concentration (type real) [ppm] (1ppm = 1 part per million)
    THERM - temperature of auxiliary internal sensor (type real) [°C]
```

3.5. C-AQ-0004R

Module for interior for measuring the relative humidity in the air Humidity is evaluated by capacitive polymer sensor. The module contains an auxiliary temperature sensor.

Mechanical design of the module allows easy wall mounting.

Tab. 3.5 Basic parame	elers C-AQ-0004R
Measuring input RH	
Range	0 ÷ 100 % RH
Resolution	0,1 % RH
Accuracy	3,5 % RH (for RH 20 ÷ 80%)
	5 % RH (for RH 0 ÷ 100%)
auxiliary temperature in	
Sensor type	Thermistor NTC 12k,
	internal
Range	0 ÷ +50 °C
Resolution	0,1 °C
Accuracy	0,8 °C
Power supply	
Power supply and	24 V (27 V) from the CIB
communication	
Nominal power	42 mA
consumption	
Dimensions and weight	
Dimensions	125 × 83 × 36mm
Weight	300g
Operating and installation	
Operating temperature	0 ÷ +40 °C
Storage temperature	-20 ÷ +60 °C
IP degree of protection	IP20
acc. IEC 529	
Overvoltage category	III
Degree of pollution	2
according	
EN 61313	
Operating position	arbitrary
Installation	on wall
Connection	screw type terminals
Cross-section of wires	max. 2,5 mm ²

Tab. 3.5 Basic parameters C-AQ-0004R

3.5.1. Configuration

The module does not require additional configuration.

3.5.2. The structure of the transmitted data

Module contains 3 devices in total:

 device 1, input, 	1*STAT	(status)
 device 2, input, 	1*AI	(humidity)
 device 3, input, 	1*AI	(internal thermometer)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

😽 Nastavení V/V - Konfiguraci ne	lze měnit			
IEC 💑 💑 💑 DEC EXP HE	X BIN STR 🚺 🛅			5:2
○ RM0				
0 CP-1004 2 MI2-01M 3 IR-105	7			
Struktura dat	Úplný zápis	Alias [®] Svorka	Abs./délka	Hodnota
王 Statistic_MI_CIB1 💠 TCHStatistic 🗛	r0_p2_Statistic_MI_CIB1		XX0/10	
🗄 Control_MI_CIB1 : TCHControl 🛛 📑	r0_p2_Control_MI_CIB1		%Y0/2	\$0000
□ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN			
E-STAT : TCIB_AI2_STAT	MI_CIB1_IN~ID1_IN~STAT			\$00
🛛 🗌 🗕 OUF1 : BOOL 🛛 🗛	MI_CIB1_IN~ID1_IN~STAT~OUF1		%R204.0	0
-VLD1 : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~VLD1		%R204.1	0
—OUF2 : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~OUF2		%R204.2	0
-VLD2 : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~VLD2		%R204.3	0
	MI_CIB1_IN~ID1_IN~RH		%RF205	0
THERM : REAL 🗛	MI_CIB1_IN~ID1_IN~THERM		%RF209	0

Fig. 3.14 The structure of the transmitted data

Input data

STAT	RH	THERM

STAT

- status byte of analog inputs (8x type bool)

	-	-	-	-	VLD2	OUF2	VLD1	OUF1
Bit	.7	.6	.5	.4	.3	.2	.1	.0

OUF1 - overflow / underflow of RH - relative humidity measuring VLD1 - validity of reading RH OUF2 - overflow / underflow of range of thermometer THERM

VLD2- validity of reading the thermometer THERM

RH - value of RH relative humidity (type real) [%]

THERM - temperature of auxiliary internal sensor (type real) [°C]

3.6. C-DL-0012S

The module operates as a converter CIB bus on the bus DALI (according to specification NEMA Standards Publication 243-2004). DALI is bus specialized to control DALI lighting modules (ballasts). One converter C-DL-0012S can control up to 12 DALI ballasts. The converter has implemented system support for the "random" addressing the connected DALI ballasts.

The mechanical design of the module is designed to be mounted under cover of device (ingress protection of the module IP10B). Signals of the module are available on ribbon cable.

signalling green RUN LED is accessible from the side of module opposite to ribbon cable. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

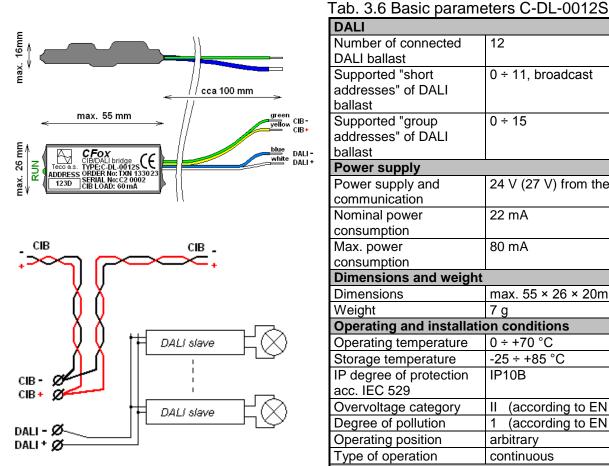


Fig. 3. 15 View and connection C-DL-0012S

DALI Number of connected 12 DALI ballast 0 ÷ 11, broadcast Supported "short addresses" of DALI ballast Supported "group 0 ÷ 15 addresses" of DALI ballast **Power supply** 24 V (27 V) from the CIB Power supply and communication Nominal power 22 mA consumption Max. power 80 mA consumption **Dimensions and weight** max. 55 × 26 × 20mm Dimensions Weight 7 g **Operating and installation conditions** Operating temperature 0 ÷ +70 °C Storage temperature -25 ÷ +85 °C IP10B IP degree of protection acc. IEC 529 Overvoltage category (according to EN 60664) Ш Degree of pollution (according to EN 60664) 1 Operating position arbitrary Type of operation continuous Installation under cover of device Туре Connecting Ribbon cable 0.15 mm²

3.6.1. Configuration

For software support of the module it is necessary library DaliLib.mlb imported in Mosaic. Configuration and serving Dali network is then performed using function blocks of this library. For detailed description of the library see documentation TXV 003 66 Library DaliLib. If this library is not imported to the project, the project with the C-DL-0012S cannot be compiled !!!!

3.6.2. The structure of the transmitted data

Module contains 1 device in total:

- device 1, input/output, STAT+DATA_IN/CONT+DATA_OUT

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis 🖣	Alias 🏾 🎙	Svorka 👎	Abs./délka
王 Statistic_MI_CIB1 💠 TCHStatistic 🗛	r0_p2_Statistic_MI_CIB1			%X0/10
🗄 Control_MI_CIB1 : TCHControl 📑	r0_p2_Control_MI_CIB1			%Y0/2
□ID1_IN : TC_DL_0012SIN	MI_CIB1_IN~ID1_IN			
⊟-stat : TStatC_DL_0012S	MI_CIB1_IN~ID1_IN~stat			
-RNDOK : BOOL 🍒	MI_CIB1_IN~ID1_IN~stat~RNDOK			%R205.2
—SHS : BOOL 🗛	MI_CIB1_IN~ID1_IN~stat~SHS			%R205.3
-RRE : BOOL 🍒	MI_CIB1_IN~ID1_IN~stat~RRE			%R205.4
-RRF : BOOL 🍒	MI_CIB1_IN~ID1_IN~stat~RRF			%R205.5
—Done : BOOL 🗕	MI_CIB1_IN~ID1_IN~stat~Done			%R205.6
🛛 🖾 🗛 🗛 🗛 🗛	MI_CIB1_IN~ID1_IN~stat~ARC			%R205.7
🔄 🗖 📥 data : USINT 🛛 🗛	MI_CIB1_IN~ID1_IN~data			%R206
DILOUT : TC_DL_0012SOUT	MI_CIB1_OUT~ID1_OUT			
⊟-cont : TContC_DL_0012S	MI_CIB1_OUT~ID1_OUT~cont			
LENM : BOOL	MI_CIB1_OUT~ID1_OUT~cont~LENM			%R238.0
DBL : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~DBL			%R238.1
RNDS : BOOL	MI_CIB1_OUT~ID1_OUT~cont~RNDS			%R238.2
-CHS : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~CHS			%R238.3
-TRG : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~TRG			%R238.6
ACN : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~ACN			%R238.7
—address : USINT 📑	MI_CIB1_OUT~ID1_OUT~address			%R239
—command : USINT 📑	MI_CIB1_OUT~ID1_OUT~command			%R240
🗖 🗖 🚽 🗖 🗖 🚽 🗖	MI_CIB1_OUT~ID1_OUT~data			%R241

Input data

STAT DATA

STAT

- status	byte of m	odule (8x t	ype bool	

	ARC	DONE	RRF	RRE	SHS	RNDOK	-	-	
Bit	.7	.6	.5	.4	.3	.2	.1	.0	-

I)

- ARC alternance bit of the receiver. In the case of the change this value one can accept the other bits in the STAT
- *DONE* flag of processing a request to send the message to the DALI bus

		0 = converter is ready for processing the request 1 = converter processed the request
	RRF	 flag of the replies received from the DALI bus 1 = reply delivered
	RRE	 error flag when receiving answers / at "random" addressing (if the <i>RRE</i> is set at "random" addressing, is in the input variable <i>DATA</i> specified error at the same time) 1 = error / collision when receiving answers / at "random" addressing
	SHS RNDOK	 finding ballast in the "random" addressing Exit from "random" addressing (the entire address space "random" addresses were searched)
DATA	- response	of the DALI bus / error code (type 1 usint) error codes: 3 = Error of setting / verification of short addresses 4 - required short address is out of range

4 = required short address is out of range

Input data

CONT	ADDRESS	COMMAND	DATA
------	---------	---------	------

CONT	 control word of module (8x type bool)
------	---

	ACN	TRG	-	-	CHS	RNDS	DBL	LENM
Bit	.7	.6	.5	.4	.3	.2	.1	.0

- ACN Alternance bit of transmitter. When the value is changed, other bits in CONT (if the other bits in the CONT are zero the flags in STAT are reset = reset mode) are accepted.
- *TRG* request to send messages to the DALI bus
- CHS Starting the search and addressing the ballast in the "random" addressing, the required short address must be currently registered in the variable ADDRESS
- *RNDS* Activation of the mode "random" addressing
- DBL requirement for multiple (double) sending the same message to the DALI bus. Repeated message will be sent within 100ms from the first message (requirement of some DALI messages)
- LENM length of transmitted DALI message
 - 0 = length 2 Byte (ADDRESS, COMMAND)
 - 1 = length 3 Byte (ADDRESS, COMMAND, DATA)
- ADDRESS address byte of DALI message (1x type usint)
- COMMAND control byte of DALI message (1x type usint)
- DATA data byte of DALI message (1x type usint)

Coding of DALI messages (in output variables ADDRESS, COMMAND and DATA) is defined by the DALI protocol specification.

3.6.3. Module specifics

To serve the C-DL-0012S module it is **necessary** to install communication library DaliLib.mlb (otherwise the project cannot be compiled!!!).

3.7. C-DL-0064M

The module operates as a converter CIB bus on the bus DALI (according to specification *NEMA Standards Publication 243-2004*). DALI is bus specialized to control DALI lighting modules (ballasts). One converter C-DL-0064S can control up to 64 DALI ballasts. The converter has implemented system support for the "random" addressing the connected DALI ballasts.

Mechanical design corresponds to the modular design with width of 2M for mounting on the DIN-rail. After connecting the module to the CIB line (external power supply 24V DC) the green RUN LED lights still. If the module is served by the CIB (it communicates), green RUN LED flashes regularly.

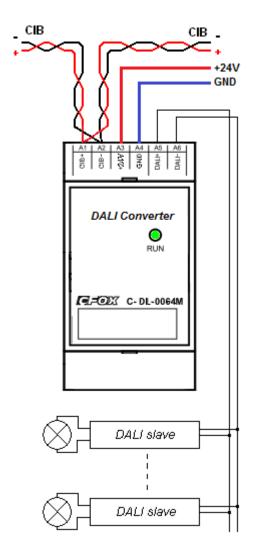


Fig. 3. 17 View and connection C-DL-0064M

Tab. 3.7 Basic param	eters C-DL-0064M
DALI	
Number of connected	64
DALI ballast	
Supported "short	0 ÷ 63, broadcast
addresses" of DALI	
ballast	
Supported "group	0 ÷ 15
addresses" of DALI	
ballast	
Power supply and com	
Power supply	24 V (from external power
	supply)
Nominal power	30 mA
consumption	
Max. power	320 mA
consumption	
Communication	CIB, DALI
Typical power	0 mA
consumption from CIB	
Dimensions and weight	
Dimensions	106 × 92 × 35mm
Weight	65 g
Operating and installati	
Operating temperature	0 ÷ +70 °C
Storage temperature	-25 ÷ +85 °C
IP degree of protection	IP10B
acc. IEC 529	
Overvoltage category	II (according to EN 60664)
Degree of pollution	1 according to EN 60664
Operating position	arbitrary
Type of operation	continuous
Installation	
Туре	on DIN rail
Connection terminals	Screw-type
Cross-section of wires	Max. 2,5 mm ²

Tab. 3.7 Basic parameters C-DL-0064M

3.7.1. Configuration

For software support of the module it is necessary library DaliLib.mlb imported in Mosaic. Configuration and serving Dali network is then performed using function blocks of this library. For detailed description of the library see documentation TXV 003 66 Library DaliLib. If this library is not imported to the project, the project with the C-DL-0064S cannot be compiled !!!!

3.7.2. The structure of the transmitted data

Module contains 1 device in total:

```
- device 1, input/output, STAT+DATA_IN/CONT+DATA_OUT
```

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis 🏾 🎙	Alias 🏼	Svorka 🌗	Abs./délka
王 Statistic_MI_CIB1 💠 TCHStatistic 🗛	r0_p2_Statistic_MI_CIB1			XX0/10
Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1			%Y0/2
□ ID1_IN : TC_DL_0012SIN	MI_CIB1_IN~ID1_IN			
⊟-stat : TStatC_DL_0012S	MI_CIB1_IN~ID1_IN~stat			
-RNDOK : BOOL 🍒	MI_CIB1_IN~ID1_IN~stat~RND0K			%R205.2
—SHS : BOOL 🍒	MI_CIB1_IN~ID1_IN~stat~SHS			%R205.3
-RRE : BOOL 🍒	MI_CIB1_IN~ID1_IN~stat~RRE			%R205.4
-RRF : BOOL 🍒	MI_CIB1_IN~ID1_IN~stat~RRF			%R205.5
—Done : BOOL 🔶	MI_CIB1_IN~ID1_IN~stat~Done			%R205.6
🛛 🗆 🗛 🗛 🗛 🗛	MI_CIB1_IN~ID1_IN~stat~ARC			%R205.7
🗕 🗕 📥 data : USINT 🛛 🗛	MI_CIB1_IN~ID1_IN~data			%R206
□ID1_OUT : TC_DL_0012SOUT	MI_CIB1_OUT~ID1_OUT			
⊟-cont : TContC_DL_0012S	MI_CIB1_OUT~ID1_OUT~cont			
LENM : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~LENM			%R238.0
-DBL : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~DBL			%R238.1
-RNDS : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~RNDS			%R238.2
—CHS : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~CHS			%R238.3
-TRG : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~TRG			%R238.6
ACN : BOOL 📑	MI_CIB1_OUT~ID1_OUT~cont~ACN			%R238.7
—address : USINT 📑	MI_CIB1_OUT~ID1_OUT~address			%R239
—command : USINT 📑	MI_CIB1_OUT~ID1_OUT~command			%R240
🗖 🗖 🚽 🗖 🗖 🚽 🗖	MI_CIB1_OUT~ID1_OUT~data			%R241

Fig. 3.18 The structure of the transmitted data

Input data

STAT DATA

STAT

- status byte of module (8x type bool)

	ARC	DONE	RRF	RRE	SHS	RNDOK	-	-	
Bit	.7	.6	.5	.4	.3	.2	.1	.0	-

ARC	- alternance bit of the receiver. In the case of the change this
	value one can accept the other bits in the STAT

DONE	- flag of processing a request to send the message to the DALI
	bus

0 =converter is ready for processing the request

- 1 = converter processed the request
- RRF
- flag of the replies received from the DALI bus
 1 = the reply was delivered

	RRE SHS RNDOK	 error flag when receiving answers / at "random" addressing (if the <i>RRE</i> is set at "random" addressing, is in the input variable <i>DATA</i> specified error at the same time) 1 = error / collision when receiving answers / at "random" addressing finding ballast in the "random" addressing Exit from "random" addressing (the entire address space "random" addresses were searched)
DATA	- response	e of the DALI bus / error code (type 1 usint) error codes: 3 = Error of setting / verification of short addresses 4 = required short address is out of range

Output data

CONT	ADDRESS	COMMAND	DATA

CONT - control word of module (8x type bool)

	ACN	TRG	-	-	CHS	RNDS	DBL	LENM
Bit	.7	.6	.5	.4	.3	.2	.1	.0

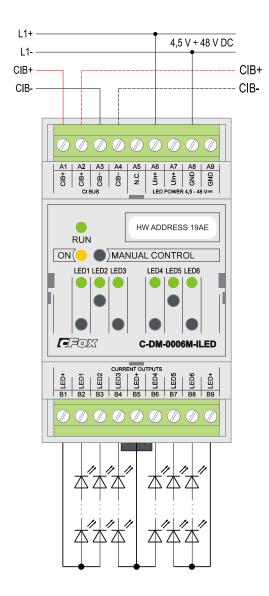
- ACN Alternance bit of transmitter. When the value is changed, other bits in CONT (if the other bits in the CONT are zero the flags in STAT are reset = reset mode) are accepted.
- *TRG* request to send messages to the DALI bus
- CHS Starting the search and addressing the ballast in the "random" addressing, the required short address must be currently registered in the variable ADDRESS
- *RNDS* Activation of the mode "random" addressing
- DBL requirement for multiple (double) sending the same message to the DALI bus. Repeated message will be sent within 100ms from the first message (requirement of some DALI messages)
- LENM length of transmitted DALI message 0 = length 2 Byte (ADDRESS, COMMAND) 1 = length 3 Byte (ADDRESS, COMMAND DATA)
- ADDRESS address byte of DALI message (1x type usint)

COMMAND - control byte of DALI message (1x type usint)

DATA - data byte of DALI message (1x type usint)

Coding of DALI messages (in output variables ADDRESS, COMMAND and DATA) is defined by the DALI protocol specification.

3.7.3. Module specifics


To serve the C-DL-0012S module it is **necessary** to install communication library DaliLib.mlb (otherwise the project cannot br compiled!!!).

3.8. C-DM-0006M-ILED

The module is designed for the **current** control of LED light sources e.g. LED chips). It includes 6 analog outputs for continuous control of up to 6 separate light sources (or 2 RGB light sources). The supply voltage for light sources is an external one in the range 4.5 to 48V DC. Nominal output current can be adjusted in steps of 150, 350, 500, or 700mA. The individual outputs can be locally manually controlled by buttons on the module. Mechanical design corresponds to the modular design with width of 3M for mounting on the DIN-rail.

The module is protected against overheating, when all outputs will be disconnected. Overheating is indicated in the status variable module.

After connecting the module to the CIB line (power connected) the green RUN LED lights still. If the module is served by the CIB (it communicates), green RUN LED flashes regularly.

Tab. 3.8 Basic parameters C-DM-0006M-ILED

Analog outputs for LED	lights
Quantity	6
Nominal output current	150/350/500/700mA
Total output current	Max. 4.2A
Current of LED+	Max. 10A
terminal	
Overload protection	No
Overheating protection	Yes
Power for LED outputs	
External supply	4.5 ÷ 48V DC, 5A
Power of module	
Power supply and	24 V (27 V) from the CIB
communication	
Max. power	15 mA
consumption	
Dimensions and weight	
Dimensions	90 × 58 × 53mm
Weight	120g
Operating and installati	on conditions
Operating temperature	0 ÷ +45 °C
Storage temperature	-25 ÷ +85 °C
IP degree of protection	IP20B
acc. IEC 529	
Operating position	arbitrary
Type of operation	continuous
Installation	on DIN rail
Connection terminals	•
Туре	Screw-type
Cross-section of wires	Max. 4 mm ²

Fig. 3. 19 View and connection C-DM-0006M-ILED

3.8.1. Configuration

C-DM-0006M-ILED			×		
Nastavení analogových výstupů					
LED1		LED4			
Nastavení blokace	Zmrazení aktuálního stavu 💽	Nastavení blokace	Zmrazení aktuálního stavu 💌		
Nastavení rampy (čas z 0% na 100%	Rampa udávaná v 1000 ms 토	Nastavení rampy (čas z 0% na 100%	Rampa udávaná v 1000 ms 💌		
Jmenovitý proud	150 mA 💌	Jmenovitý proud	700 mA		
L		LED5			
Nastavení blokace	Zmrazení aktuálního stavu 💌	Nastavení blokace	Zmrazení aktuálního stavu 💌		
Nastavení rampy (čas z 0% na 100%	Rampa udávaná v 1000 ms 💌	Nastavení rampy (čas z 0% na 100%	Rampa udávaná v 1000 ms 💌		
Jmenovitý proud	350 mA	Jmenovitý proud	350 mA		
LED3		LED6			
Nastavení blokace	Zmrazení aktuálního stavu 🛛 💌	Nastavení blokace	Zmrazení aktuálního stavu 💌		
Nastavení rampy (čas z 0% na 100%	Rampa udávaná v 1000 ms 💌	Nastavení rampy (čas z 0% na 100%	Rampa udávaná v 1000 ms 💌		
Jmenovitý proud	500 mA	Jmenovitý proud	350 mA		
Blokovat manuální režim LED1, LED2, LED3 Blokovat manuální režim LED4, LED5, LED6					
		✓	OK 🛛 🗶 Zrušit		

Fig. 3.20 Module configuration

Block setting

For individual LED outputs can be set whether the module during transition into HALT mode has to froze its outputs or whether the outputs has to be cleared.

Ramp settings

For individual LED outputs can be set up the step for leading (falling) ramp to overrun from 0 to 100% (and vice versa). You can choose between steps of 100ms or steps of 1000ms. The specific ramp values are passed to the module in output data.

Nominal current

For each LED output can be set to the rated output current (representing the value of the output set at 100%). The current can be set for 150, 350, 500, 700mA.

Block of manual mode

To check the box the ability of manual control of specific LED outputs in RUN mode is blocked. In the HALT mode the manual control of LED outputs is allowed always.

In RUN mode, the manual control is activated by pressing the button *MANUAL CONTROL* on module. At the same time the yellow indicator LED lights up *ON*. Then it is possible to change the status of each output (0% / 100%). Another pressing the button *MANUAL CONTROL* LED indicator *ON* goes off and the manual mode is cancelled. Then LED outputs are controlled according to the commands of the CIB line. Activity of manual mode is also indicated in the module status variable *STAT.ManMode*.

3.8.1. The structure of the transmitted data

Module contains 4 devices in total:

- device 1,	input,	1*STAT	(status)
- device 2,	input,	1*thermometer		
- device 3,	output,	3*AO (1-3)		
- device 4,	output,	3*AO (4-6)		

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon $\boxed{10}$ in toolbar.

Struktura dat	Úplný zápis	Alias [∢]	Svorka ⁴	Abs./délka4	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
🗄-STAT : TCIB_CDM_STAT 🛛 🔒	MI_CIB1_IN~ID1_IN~STAT			%R204 / 1	\$00
- itherm : real -	MI_CIB1_IN~ID1_IN~iTHERM			%RF205	0
□ ID1_OUT : TMI_CIB1_ID1_OUT	MI_CIB1_OUT~ID1_OUT				
⊨ -LEDa : TCIB_CDM_LEDa	MI_CIB1_OUT~ID1_OUT~LEDa				
LED1 : REAL	MI_CIB1_OUT~ID1_OUT~LEDa~LED1			%RF228	0
-ramp1 : USINT	MI_CIB1_OUT~ID1_OUT~LEDa~ramp1			%R232	0
-LED2 : REAL	MI_CIB1_OUT~ID1_OUT~LEDa~LED2			%RF233	0
—ramp2 : USINT	MI_CIB1_OUT~ID1_OUT~LEDa~ramp2			%R237	0
-LED3 : REAL	MI_CIB1_OUT~ID1_OUT~LEDa~LED3			%RF238	0
-ramp3 : USINT	MI_CIB1_OUT~ID1_OUT~LEDa~ramp3			%R242	0
E-LEDB : TCIB_CDM_LEDB	MI_CIB1_OUT~ID1_OUT~LEDb				
-LED4 : REAL	MI_CIB1_OUT~ID1_OUT~LEDb~LED4			%RF243	0
-ramp4 : USINT	MI_CIB1_OUT~ID1_OUT~LEDb~ramp4			%R247	0
-LED5 : REAL	MI_CIB1_OUT~ID1_OUT~LEDb~LED5			%RF248	0
-ramp5 : USINT	MI_CIB1_OUT~ID1_OUT~LEDb~ramp5			%R252	0
-LED6 : REAL	MI_CIB1_OUT~ID1_OUT~LEDb~LED6			%RF253	0
-ramp6 : USINT	MI_CIB1_OUT~ID1_OUT~LEDb~ramp6			%R257	0

Fig. 3.21 The structure of the transmitted data

Input data

STAT iTHERM

STAT

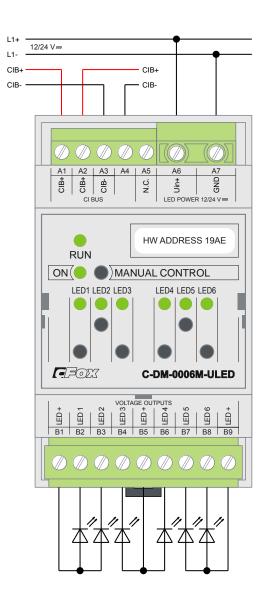
- status byte of module (8x type bool)

	OverHeat	ManMode	-	-	-	-	-	-
Bit	.7	.6	.5	.4	.3	.2	.1	.0

ManMode - signalling of manual mode of LED outputs. *OverHeat* - overheating of module (LED outputs are disconnected)

iTHERM - internal module temperature (type real) [°C]

Output data


	LEDa	LEDb	
LEDx	- the value of analo	og LEDx output (type real), 0	÷100[%]
rampx		• •	ut (type usint), 0÷255 it represents the ramp either

3.9. C-DM-0006M-ULED

The module is designed for the **voltage** control of LED light sources e.g. LED stripes). It includes 6 analog outputs for continuous control of up to 6 separate light sources (or 2 RGB light sources). The supply voltage for light sources is an external one (12V or 24V). Each output can be locally manually controlled by buttons on the module. Mechanical design corresponds to the modular design with width of 3M for mounting on the DIN-rail.

The individual LED outputs are protected against short circuit. During short circuit indication the respective output circuit turns off and the LED indicator is flashing. The module is also protected against overheating when the output is disconnected. Short circuit and overheating is indicated in the status variable module.

After connecting the module to the CIB line (power connected) the green RUN LED lights still. If the module is served by the CIB (it communicates), green RUN LED flashes regularly.

Tab. 3.9 Basic parameters C-DM-0006M-ULED

	ers C-DIVI-0006IVI-0LED
Analog outputs for LED	
Quantity	6
Output voltage	12/24V DC
Current of LED1-6	Max. 6A
terminal	
Current of LED+	Max. 10A
terminal	
Total output current	Max. 24A
Overload protection	Yes
Power for LED outputs	
External supply	12/24V DC, max. 24A
Power module	
Power supply and	24 V (27 V) from the CIB
communication	
Max. power	15 mA
consumption	
Dimensions and weight	
Dimensions	90 × 58 × 53mm
Weight	100g
Operating and installation	
Operating temperature	0 ÷ +45 °C
Storage temperature	-25 ÷ +85 °C
IP degree of protection	IP10B
acc. IEC 529	
Operating position	arbitrary
Type of operation	continuous
Installation	on DIN rail
Connection terminals	
CIB	Screw-type
LED	Screw-type,, removable
Cross section of CIB,	Max. 2,5 mm ²
LED wires	, -
External power for LED	Screw-type
Cross section of wires of	Max. 4 mm^2
external supply of LED	

Fig. 3. 22 View and connection C-DM-0006M-ULED

3.9.1. Configuration

C-DM-0006M-ULED	×
Nastavení analogových výstupů	
LED1	LED4
Nastavení blokace Zmrazení aktuálního stavu 💌	Nastavení blokace Nulování/odepnutí výstupu 💌
Nastavení rampy (cas z 0% na 100% Rampa udávaná v 1000 ms 💌	Nastavení rampy (cas z 0% na 100% Rampa udávaná v 100 ms 💌
LED2	LED5
Nastavení blokace Zmrazení aktuálního stavu 💌	Nastavení blokace Zmrazení aktuálního stavu 💌
Nastavení rampy (cas z 0% na 100% Rampa udávaná v 1000 ms 💌	Nastavení rampy (cas z 0% na 100% Rampa udávaná v 1000 ms 💌
LED3	LED6
Nastavení blokace Zmrazení aktuálního stavu 💌	Nastavení blokace Zmrazení aktuálního stavu 💌
Nastavení rampy (cas z 0% na 100% Rampa udávaná v 1000 ms 💌	Nastavení rampy (cas z 0% na 100% Rampa udávaná v 1000 ms 💌
🔲 Blokovat manuální režim LED1, LED2, LED3	🦳 Blokovat manuální režim LED4, LED5, LED6
	🖌 OK 🛛 🗶 Zrušit

Fig. 3.23 Module configuration

Block setting

For individual LED outputs can be set whether the module during transition into HALT mode has to froze its outputs or whether the outputs has to be cleared.

Ramp settings

For individual LED outputs can be set up the step for leading (falling) ramp to overrun from 0 to 100% (and vice versa). The specific ramp values are passed to the module in output data.

Block of manual mode

Checking the box the ability to manually control specific LED outputs in RUN mode is blocked. In the HALT mode the manual control of LED outputs is allowed always.

In RUN mode, the manual control is activated by pressing the button *MANUAL CONTROL* on module. At the same time the yellow indicator LED lights up *ON*. Then it is possible to change the status of each output (0% / 100%). Another pressing the button *MANUAL CONTROL* LED indicator *ON* goes off and the manual mode is cancelled. Then LED outputs are controlled according to the commands of the CIB line. Activity of manual mode is also indicated in the module status variable *STAT.ManMode*.

3.9.2. The structure of the transmitted data

Module contains 4 devices in total:

- device 1,	input,	1*STAT	(status)
- device 2,	input,	1*thermometer		
- device 3,	output,	3*A0		
- device 4,	output,	3*A0		

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon $\boxed{10}$ in toolbar.

Struktura dat		Úplný zápis 📲	Alias ⁴	Svorka ⁴	Abs./délka¶	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN		MI_CIB1_IN~ID1_IN				
	F	MI_CIB1_IN~ID1_IN~STAT			%R204 / 1	\$00
-itherm : real	F	MI_CIB1_IN~ID1_IN~iTHERM			%RF205	0
□ ID1_OUT : TMI_CIB1_ID1_OUT		MI_CIB1_OUT~ID1_OUT				
🖨 LEDa : TCIB_CDM_LEDa		MI_CIB1_OUT~ID1_OUT~LEDa				
-LED1 : REAL		MI_CIB1_OUT~ID1_OUT~LEDa~LED1			%RF228	0
-ramp1 : USINT		MI_CIB1_OUT~ID1_OUT~LEDa~ramp1			%R232	0
-LED2 : REAL		MI_CIB1_OUT~ID1_OUT~LEDa~LED2			%RF233	0
-ramp2 : USINT		MI_CIB1_OUT~ID1_OUT~LEDa~ramp2			%R237	0
-LED3 : REAL		MI_CIB1_OUT~ID1_OUT~LEDa~LED3			%RF238	0
ramp3 : USINT	2	MI_CIB1_OUT~ID1_OUT~LEDa~ramp3			%R242	0
-LEDB : TCIB_CDM_LEDB		MI_CIB1_OUT~ID1_OUT~LEDb				
-LED4 : REAL	2	MI_CIB1_OUT~ID1_OUT~LEDb~LED4			%RF243	0
-ramp4 : USINT	2	MI_CIB1_OUT~ID1_OUT~LEDb~ramp4			%R247	0
-LED5 : REAL	2	MI_CIB1_OUT~ID1_OUT~LEDb~LED5			%RF248	0
-ramp5 : USINT		MI_CIB1_OUT~ID1_OUT~LEDb~ramp5			%R252	0
-LED6 : REAL		MI_CIB1_OUT~ID1_OUT~LEDb~LED6			%RF253	0
ramp6 : USINT		MI_CIB1_OUT~ID1_OUT~LEDb~ramp6			%R257	0

Fig. 3.24 The structure of the transmitted data

Input data

-									
	STAT		THERM						
STAT	- statu	is byte of n	nodule (8x t	ype bool)					
		OverHeat	ManMode	OverLoad6					OverLoad1
	Bit	.7	.6	.5	.4	.3	.2	.1	.0
	Man	Mode - się	gnalling of n	n LEDx outpunanual mode of module (LE	of LE			conne	ected)
iTHERI	M - inter	nal module	e temperatu	re (type real)	[°C]				

Output data

	LEDa	LEDb]
LEDx	- the value of analo	g LEDx output (type real), 0	÷100[%]
rampx		•	ut (type usint), 0÷255 it represents the ramp either

3.10. C-DM-0402M-RLC

The module is designed to control the light intensity (luminous flux) of most dimmable loads powered by mains voltage 230 V \sim . It includes 2 dimmer outputs and 4 universal AI/DI inputs (configurable in pairs). The dimmer is suitable for dimming resistive, inductive or capacitive loads. Dimmer works on the principle of phase control of the angle of the on or off.

Each output can be locally manually controlled by buttons on the module (ON/OFF). The outputs are protected against short circuit and overheating module.

After connecting the module to the CIB line (power connected) the green RUN LED lights still. If the module is served by the CIB (it communicates), green RUN LED flashes regularly. Mechanical design corresponds to the modular design with width of 3M for mounting on the DIN-rail.

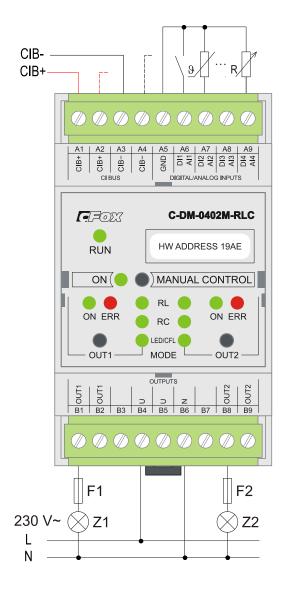


Fig. 3. 25 View and connecting C-DM-0402M-RLC

Dimmer outputs OUT	
Quantity	2
Type of load	R, L, C, RL, RC, LED, CFL
Power load	230V AC / 50Hz
Switching power	Max. 2 x 500 VA*)
Output current	Max. 2 x 2.2A
Overload protection	Yes
Overheating protection	Yes
Parallel work	Yes, max. 4 channels (on
	the same CIB line)
The power element	NMOS transistor
Universal inputs AI/DI	
Quantity	4
Optional input type	Binary (button), balanced
optional input type	(for security detectors),
	Pt1000, Ni1000, NTC12k Ω ,
	KTY81-121, resistance
	160kΩ
Binary input	NO contact (0/1) (Normally
	Open)
Balanced input for	Resistance 1x2k2, or 2x1k1
security detectors	, -
Pt1000	–90 ÷ +320 °C
Ni1000	–60 ÷ +200 °C
NTC 12kΩ	–40 ÷ +125 °C
KTY81-121	–55 ÷ +125 °C
Resistance input	0 ÷ 160kΩ
Resolution, Accuracy	0.1 °C / 10Ω, 0.5 % of
, ,	range
Period of refresh Al	typically 5s
Power module	
Power supply and	24 V (27 V) from the CIB
communication	
Max. power	20 mA
consumption	
Dimensions and weight	
Dimensions	90 × 58 × 53mm
Weight	120g
Operating and installation	
Operating temperature	0 ÷ +55 °C ^{*)}
Storage temperature	-25 ÷ +85 °C
IP degree of protection	IP20
acc. IEC 529	
Operating position	vertical
Type of operation	continuous
Installation	on DIN rail
Connection terminals	·
Туре	Screw-type
Cross-section of wires	Max. 2,5 mm^2
	g. spacing between modules is

Tab. 3.10 Basic parameters C-DM-0402M-RLC

¹⁾ because of the module cooling, spacing between modules is recommended

min. 15mm (temperature derating curve module see next)

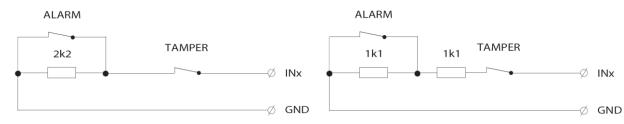


Fig. 3. 26 Simply balanced input for security detectors Fig. 3. 27 Double-balanced input for security detectors

3.10.1. Configuration

C-DM-0402M-RLC					×
Nastavení binárních vstupů					
🔲 DI1 : Vyvážený vstup (zabezpečovačka)	📕 Vstup má dvojité	vyvážení			
🔲 DI2 : Vyvážený vstup (zabezpečovačka)	🔲 Vstup má dvojité	vyvážení			
DI3 : Vyvážený vstup (zabezpečovačka)	🥅 Vstup má dvojité	vyvážení			
DI4 : Vyvážený vstup (zabezpečovačka)	🔽 Vstup má dvojité	vyvážení			
Prodleva vyhodnocení dlouhého stisku	0,7 🚖 s				
Nastavení analogových vstupů					
AI1 : Typ vstupu Pt1000 W100 =	= 1,385 🔹 📕	Filtrace vstupu	0,0 🚖		
AI2 : Typ vstupu Pt1000 W100 =	= 1,385 🔹 🔳	Filtrace vstupu	0,0 🚖		
AI3 : Typ vstupu Pt1000 W100 =	= 1,385 🔹 🔳	Filtrace vstupu	0,0 🚖		
AI4 : Typ vstupu Pt1000 W100 =	= 1,385 💌 📕	Filtrace vstupu	0,0 🚖		
Nastavení stmívačů					
OUT1		OUT2			
Typ zátěže zá	átěž typu RL 📃 🗾	Typ zátěže		zátěž typu RC	-
Typ výstupní křivky	neární 🗾	Typ výstupní křivky		exponenciální	•
Nastavení rampy (čas z 0% na 100%) 🛛 🤻	ampa udávaná v 1000 ms 💌	Nastavení rampy (čas z	0% na 100%)	Rampa udávaná v 100 ms	•
Nastavení blokace Zr	mrazení aktuálního stavu 🛛 💌	Nastavení blokace		Nulování/odepnutí výstupu	•
🗖 Blokovat manuální režim		Blokovat manuální re	žimi		
				OK X Zru	išit

Fig. 3.28 Module configuration

The input terminals DI/AIx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. 2.1 Master configuration, check the box Show units, devices

Balanced input

By checking the item, the respective input will be evaluated as a simple balanced binary alarm input. If the item is not checked, the respective input evaluated as a normal binary input (on/off).

Double balanced input

By checking the item, respective input will be evaluated as a double balanced binary alarm input. If the item is not checked and the input is configured for security systems (balanced input), the respective input evaluated as alarm input with a simple balance.

Delay, evaluation of long press

For binary (momentary button) inputs module directly evaluate the short and long presses on each input. By entering values one can set a delay time after which the activation of digital input DI is signalled as the long press (PRESS). Activating the digital input for period shorter than the entered value will be signalled by as the short press (CLICK). Delay period (T_{press}) can be inserted in the range 0.1÷2.5s.

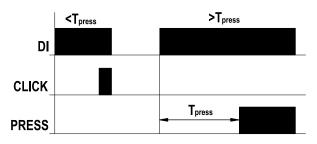


Fig. 3. 29 Evaluation of short / long press

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12kΩ at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160kΩ)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

х	- the current value of the analog input
Уt	- output
У _{t-1}	- recent output
ζ	-time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Type of load

The dimmer allows to set the type of the inductive load RL or capacitive RC one. Selected type of load is simultaneously indicated by corresponding RL or RC indicator lights on the module.

If the output has simultaneously set the "ignition" output value (in variable *OUTx.MINIMUM*), the corresponding CFL/LED indicator lights. In such case if the output of the dimmer is required lower than this minimum value, the output is inactive

Туре	Principle of the control	Ex	ample of the load
RL	angle switching on	-	bulb
	switching off when passing through the sine	-	dimmable compact fluorescent
	wave zero		lamp (CFL)
		-	dimmable LED bulb
		-	transformer (winding)
RC	switching on when passing through the sine	-	Bulb
	wave zero, angle switching off	-	electronic ballast

Warning : When connecting non-dimmable lamps to the dimmer their irreparable damage threats!!!

Type of characteristic output curve

Dimmer works on the principle of phase control of the angle of the on or off. Angle to switch on (switch off) depends on the desired percentage value of the output (in variable *OUTx.LEVEL*, 0÷100%). This dependence curve can be set in the module as:

- linear
- logarithmic

Type of dependence curves has to be set according to the requirement of behaviour of specific load.

Ramp settings

For each dimmer outputs the leading (falling) ramp can be set up. The specific ramp values are passed to the module in output data (variables *OUTx. RAMP*) and represent the running time of the output 0% <-> 100%.

Block setting

For individual dimmer outputs can be set whether the module during transition into HALT mode has to froze its outputs or whether the outputs has to be cleared.

Block of manual mode

Checking the box the ability to manually control specific dimmer outputs in RUN mode is blocked. In the HALT mode the manual control of dimmer outputs is allowed always.

In RUN mode, the manual control is activated by pressing the button *MANUAL CONTROL* on module. At the same time the yellow indicator LED lights up *ON*. Then it is possible to change the status of each output (0% / 100%). Another pressing the button *MANUAL CONTROL* LED indicator *ON* goes off and the manual mode is cancelled. Then LED outputs are controlled according to the commands of the CIB line. Activity of manual mode is also indicated in the module status variable *STAT.ManMode*.

3.10.2. The structure of the transmitted data

Module contains 6 devices in total:

- device 1	input,	4*DI/EZS
- device 2	input/output,	1*DIMM (OUT1)
- device 3	input/output,	1*DIMM (OUT2)
- device 4	input,	STAT + THERM
- device 5	input,	2*AI (AI1, AI2)
- device 6	input,	2*AI (AI3, AI4)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis 🖣	Alias	[●] Svorka [●]	Abs./délka¶	Hodnota 🏾 🏾
□ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
🔄 DI : TCIB_CDMRLC_DI 🛛 🗛	MI_CIB1_IN~ID1_IN~DI			%R4/2	
-ACT_LEVEL1 : REAL 🗛	MI_CIB1_IN~ID1_IN~ACT_LEVEL1			%RF6	0
-ACT_LEVEL2 : REAL 🗛	MI_CIB1_IN~ID1_IN~ACT_LEVEL2			%RF10	0
🔄 🗄 – STAT 💠 TCIB_CDMRLC_STAT 🗛	MI_CIB1_IN~ID1_IN~STAT			%R14/2	
—THERM : REAL 🗛	MI_CIB1_IN~ID1_IN~THERM			%RF16	0
—Al1 : REAL 🗛	MI_CIB1_IN~ID1_IN~AI1			%RF20	0
-AI2 : REAL 🗛	MI_CIB1_IN~ID1_IN~AI2			%RF24	0
	MI_CIB1_IN~ID1_IN~AI3			%RF28	0
AI4 : REAL 🛶	MI_CIB1_IN~ID1_IN~AI4			%RF32	0
□ID1_OUT : TMI_CIB1_ID1_OUT	MI_CIB1_OUT~ID1_OUT				
DUT1 : TCIB_CDMRLC_DIM	MI_CIB1_OUT~ID1_OUT~OUT1				
-LEVEL : REAL 🦻	MI_CIB1_OUT~ID1_OUT~OUT1~LEVEL			%RF36	0
-RAMP : USINT 🧧	MI_CIB1_OUT~ID1_OUT~OUT1~RAMP			%R40	0
	MI_CIB1_OUT~ID1_OUT~OUT1~MINIMUM			%RF41	20
-OUT2 : TCIB_CDMRLC_DIM	MI_CIB1_OUT~ID1_OUT~OUT2				
-LEVEL : REAL 🧧	MI_CIB1_OUT~ID1_OUT~OUT2~LEVEL			%RF45	0
-RAMP : USINT 🧧	MI_CIB1_OUT~ID1_OUT~OUT2~RAMP			%R49	0
- MINIMUM : REAL 📑	MI_CIB1_OUT~ID1_OUT~OUT2~MINIMUM			%RF50	20

Fig. 3.30 The structure of the transmitted data

Input data

DI ACT_LEVEL1 ACT_LEVEL2	STAT	THERM	Al1	Al2	AI3	Al4
--------------------------	------	-------	-----	-----	-----	-----

DI

- status of binary inputs, signalling "tamper" status of alarm inputs (16x bool)

	CLICK4	CLICK3	CLICK2	CLICK1	DI4	DI3	DI2	DI1
Bit	.7	.6	.5	.4	.3	.2	.1	.0
			-					
	TAMPER4	TAMPER3	TAMPER2	TAMPER	1 PRESS	64 PRESS3	PRESS2	PRESS1
Bit	.15	.14	.13	.12	.11	.10	.9	.8
Dlx CLICKx		- Current		•		/ alarm inj	out x	

PRESSx - long pulse (to log. 1) on input DIx TAMPERx - "tamper" status of alarm input x ACT_LEVELx - current status of output OUTx (type real) [%]						
STAT	- status byte of module (16x type bool)					
	VLD4 OUF4 VLD3 OUF3 VLD2 OUF2 VLD1 OUF1 Bit .7 .6 .5 .4 .3 .2 .1 .0					
	- PWR_ERR HEAT ERR2 ERR1 MAN VLDT OUFT					
	Bit .15 .14 .13 .12 .11 .10 .9 .8					
OUFx	- overflow / underflow of analog input Alx					
OUFT	VLDx - validity of reading of analog input Alx					
iTHERM	- internal module temperature (type real) [°C]					
Alx	 value of analog input Alx (type real) [°C],[kΩ] The value of temperature sensor is transferred in °C (with resolution of 					

Output data

OUT1	OUT2
------	------

OUTx.LEVEL - value of output OUTx (type real), 0+100[%]

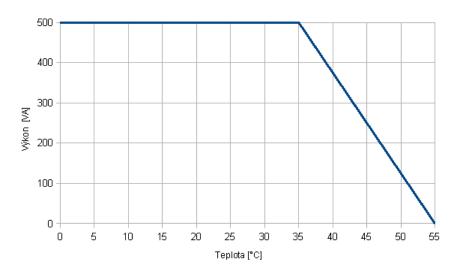
(with resolution of 10Ω).

OUTx.RAMP - the value of leading/falling ramp of output OUTx (type usint), 0÷255 Depending on the selected step of ramp the value represents a ramp of length 0 ÷ 255s, or 0 to 25.5s. The ramp represents the running time output 0% <-> 100%.

0.1°C), the value of general resistance in range 160k Ω is transferred in k Ω

OUTx.MINIMUM - "ignition" value of output OUTx (type real), 0÷100[%] In such case if the output of the dimmer (in value OUTx.LEVEL) is required lower than this minimum value, the output is inactive. This variable is automatically reset on value 20%.

3.10.3. Module specifics

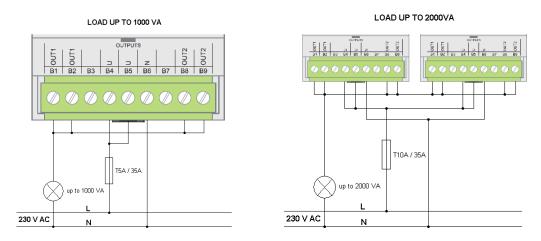

System support of CFox master

For proper function of the module C-DM-0402-RLC **the system support** is required in CFox master. This system support has been implemented into CFox **master** CF-1140 / CF-1141 in FW version **1.7** (into master MI2-01M / MI2-02M in version 2.0). If the master versions is lower, dimmer module will not work correctly (outputs will not be operated, ERR LED will flash 3 times briefly)

Operating temperature and self heating of the module

To ensure the stable operation of the module it is necessary to keep **the maximum permissible ambient temperature.** The inner space of the module during operation is additionally heated by own heat dissipation, which is proportional to dimming load of both the channel and to the character of dimming. For maximum performance, especially when installing multiple dimmers together, it is appropriate to use active cooling (fan, etc.), which ensures controlled airflow around the dimmers. Due to the cooling of module the lateral spacing between the modules in width min. 15mm is also recommended.

Eventual overheating of the module is automatically diagnosed and signalled (see chapter *Diagnostics module* below). Influence of ambient temperature on the power capabilities of the module is shown in the following chart.

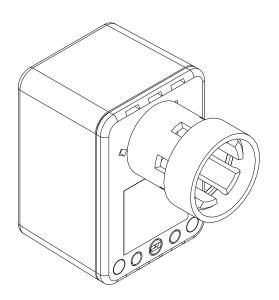


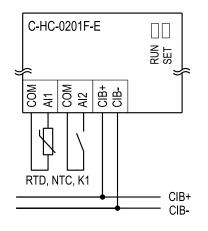
Paralleling the outputs of the dimmer

If the required control output loads are beyond the performance capabilities of one output, it is possible to connected more outputs in parallel for one load. **Up to 4** outputs can be interconnected in parallel way. Modules C-DM-0402M-RLC of such interconnected outputs has to be connected **on the same CIB line**. When configuring the module it is necessary to have all interconnected outputs **identically configured and operated**. Otherwise, there would be an overload of individual outputs and subsequent shutdown of all interconnected outputs.

In manual control mode such parallel interconnected outputs it is recommended to change

the status of individual outputs (by buttons on the module) when the power is off (disconnected fuse / circuit breaker is off).


3.10.4. Module diagnostics


Dimmer includes a number of diagnostic tools for operation of the module. Result of diagnosis is available in the status byte of module *STAT* (see chapter structure of the transmitted data). Some results of diagnosis are also signalled via LEDs on the module.. The meaning is described in the following table.

ERR LED	Description
Still lights	Overload evaluated (short circuit) of the output (signalling in STAT.ERRx). The output
	is automatically turned off (function of breaker). Unlocking the output is performed:
	 a) by pressing the appropriate button OUTx or
	b) by writing the value 0% into variable OUTx.LEVEL.
1x short flash	module is overheated (signalling in <i>STAT.HEAT</i>). Both outputs are automatically set into "ignition" value (> 65 $^{\circ}$ C). When the temperature continues to rise the outputs turn off (>70 $^{\circ}$ C). Unlocking outputs is performed automatically after cooling module (below 60 $^{\circ}$ C)
2x short flash	PWR_ERR - main power 230V AC is not connected
3x short flash	The system support from CFox master is not available, the outputs will not be operated. It is necessary to upgrade firmware in the master. See chapter <i>Module</i>
	Specifics above.

3.11. C-HC-0201F-E

Module is the proportional (continuous) drive to control the central heating radiator valves. The module - drive - contains an internal temperature sensor and 2 universal inputs, which can be connected to either an external resistive temperature sensor or an external binary signal (e.g. window contact). The module is equipped with an automatic adaptation of the drive depending on the used valve and with the function of regular spinning tracks valve (prevention valve seizure).For diagnostic functions module contains a signalling LED and control button MAN (both available after removing the module cover).Connecting the CIB is indicated RUN LED, module in operation is indicated by flashing RUN LED.

View and connection of Fig. 3.1 module

· · · · · · · · · · · · · · · · · · ·	ameters C-AC-0201F-E
The drive	
Type of drive	proportional (continuous)
Stroke of the drive ¹⁾	typ. 1.5 mm (max. 2.7 mm)
Time of run from 0% to 100%	approx.30 s
Adaptation of the drive	automatic + manual
Spinning of valve	automatic, interval of 30 days
Internal thermometer	
Туре	NTC
Range of measurement	–10 ÷ +50 °C
Accuracy	+/- 5% of range
Settling time	30 min.
Universal inputs	
Quantity	2
Optional input type	Binary or analog
Optional input type Binary inputs ²⁾	Dinary of analog
Туре	Dry contact
Input voltage	3.3V from internal power
input voltage	
Input current at log 1	supply typ. 3.3mA
Input current at log.1 Analog outputs ²⁾	typ. 5.5mA
Pt1000	–90 ÷ +320 °C
Ni1000	
NTC 12kΩ	_40 ÷ +125 °C
KTY81-121	_55 ÷ +125 °C
Resistance input	0 ÷ 160kΩ
Accuracy	+/- 2 % of range
Period of refresh Al	typically 5s
Operating and installation	
Indication (internal)	2x LED, green, RUN, SET
Button (internal)	1x MAN
Operating temperature	–10 ÷ +50 °C
Storage temperature	–25 ÷ +70 ° C
Installation	mounted on the valve
Thread of coupling nut	M30 x 1.5
Type of operation	continuous
IP degree of protection acc. IEC 529	IP0xB
Connection terminals	Push-in 0.14 \div 1.5mm ²
Power supply	
Power supply and	24 V (27 V) from the CIB
communication	、 <i>`</i> ,
Nominal power consumption	5 mA (non operating drive)
Max. power	80 mA (drive in action)
consumption	
Dimensions and weight	
Dimensions	69 × 48 × 73 mm
Weight	125g
¹⁾ The stroke of the drive α	

Tab. 3.11 Basic parameters C-HC-0201F-E

¹⁾ The stroke of the drive can be configured ²⁾ Inputs can be used either as binary or analog ones

3.11.1. Configuration

C-HC-0201F-E	
Nastavení analogových vstupů	
Typ vstupu AI1	Pt1000 W100 = 1,385 ▼ Filtrace vstupu AI1 0,0 ◆
Typ vstupu AI2	Pt1000 W100 = 1,385 ▼ Filtrace vstupu AI2 0,0 ◆
Offset dráhy pohonu [mm]	0,00 🔶
Offset odlehčení těsnění [mr	0,00 🚔
Při ztrátě komunikace	Zmrazení aktuálního stavu
Koncová poloha	NO - ventil úplně otevřen
	→ OK Xrušit

Fig. 3.2 Module configuration

The input terminals Al1 and Al2 are **shared** for both binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap.<u>2.1</u> Master configuration, check the box Show units, devices.

Type of input

Choosing the type of analog input: Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV600k (0 ÷ 630k Ω) OV6M (0 ÷ 6,5M Ω)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

- x the current value of the analog input
- y_t output
- y_{t-1} recent output
- c -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Offset of the drive track

The drive head works with preset actuator stroke 1.5 mm (movement from the fully open to fully closed position). For the case where the required other stroke of drive/actuator, this value can be corrected in range +/-1.2 mm

Offset of seal relieve

During adapting the actuator to the valve the end position of the valve is found (mechanical stop), which represents a full closure of the valve. Due to the natural deformation of the sealing element in the end position of the valve, adapting of "lightening" of the sealing element is then carried out by reversing of the drive motion for the default stroke of 0.3 mm. This position then represents the reference position, representing the valve opening 0%. Preset relieve of 0.3 mm can be corrected by a user in the range -0.3 mm / +1.2 mm.

In case the loss of communication

If the operated drive module evaluates the loss of communication with a superior master, you can set whether the position of the actuator should freeze (keep the current state), or if the drive is set to the specified end position (see below).

End position

One can specify whether the end position of the valve actuator (in case of loss of communication) is a fully open or complete closed one.

3.11.2. The structure of the transmitted data

Module contains 5 devices in total:

-	device	1,	input,	1*AI_STAT (status of temperature input)
-	device	2,	input,	2*AI (external thermometers)
-	device	З,	input,	1*AI (internal thermometer)
-	device	4,	input,	2*DI (binary input)
-	device	5,	<pre>input/output,</pre>	VSTAT + VCONT (status information of the
				actuator + control command for
				actuator)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis 🏾 🏾	Alias 🕯	Svorka ⁴	Abs./délka4	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
🕀 – STAT : TCIB_CHC_STAT 🦷	MI_CIB1_IN~ID1_IN~STAT			%R4/1	\$00
🗗 🗚 : TCIB_AI2	MI_CIB1_IN~ID1_IN~AI				
-Al1 : REAL 🗕	MI_CIB1_IN~ID1_IN~AI~AI1			%RF5	0
-AI2 : REAL -	MI_CIB1_IN~ID1_IN~AI~AI2			%RF9	0
itherm : real 🗛	MI_CIB1_IN~ID1_IN~ITHERM			%RF13	0
E-DI : TCIB_DI2	MI_CIB1_IN~ID1_IN~DI				\$00
—DI1 : BOOL 🗕	MI_CIB1_IN~ID1_IN~DI~DI1			%R17.0	0
-DI2 : BOOL 🗕	MI_CIB1_IN~ID1_IN~DI~DI2			%B17.1	0
STAT : TCIB_VCHC_STAT	MI_CIB1_IN~ID1_IN~VSTAT				
-READY : BOOL 🗕	MI_CIB1_IN~ID1_IN~VSTAT~READY			%R18.0	0
-RUN : BOOL 🗕	MI_CIB1_IN~ID1_IN~VSTAT~RUN			%R18.1	0
—FS : BOOL 🗕	MI_CIB1_IN~ID1_IN~VSTAT~FS			%R18.6	0
—SERVICE : BOOL 🗕	MI_CIB1_IN~ID1_IN~VSTAT~SERVICE			%R18.7	0
-POSITION : REAL 🗕	MI_CIB1_IN~ID1_IN~VSTAT~POSITION			%RF19	0
DID1_OUT : TMI_CIB1_ID1_OUT	MI_CIB1_OUT~ID1_OUT				
EVCONT : TCIB_VCHC_CONT	MI_CIB1_OUT~ID1_OUT~VCONT				
-INIT : BOOL	MI_CIB1_OUT~ID1_OUT~VCONT~INIT			%R23.0	0
POSITION : REAL	MI_CIB1_OUT~ID1_OUT~VCONT~POSI			%RF24	0

Input data

	STAT	AI	iTHERM DI		VSTAT					
STAT	- status	byte of tempera	ature inputs (8x t	ype bool)						
	Bit	 .7 .6	VLDI OUFI .5 .4	VLD2 OUF2 .3 .2	VLD1 OUF1 .1 .0					
	 OUFx - overflow/underflow of the range of external temperature sensor x VLDx - validity of the reading of external temperature sensor x OUFI - overflow/underflow of the range of internal temperature sensor x VLDx - validity of the reading of internal temperature sensor x 									
AI	- value of analog inputs (2x type real) [°C],[k Ω]									
	AI1 - value of analog input AI1 AI2 - value of analog input AI2									
	The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range 160k Ω is transferred in k Ω (with resolution of 10 Ω).									
THERM	- tempe	rature of auxilia	ry internal senso	r (type real) [°C]						
DI	- status of binary inputs (8x type bool)									
	Bit	 .7 .6	 .5 .4	 .3 .2	DI2 DI1 .1 .0					
	DI1 - the current status of the binary DI1 input DI2 - the current status of the binary DI2 input									

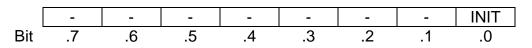
.

VSTAT - status	nformation about the actuator(8x type bool + 1x type re	al)
----------------	---	-----

	SERVICE	FS	-	-	-	-	RUN	READY
Bit	.7	.6	.5	.4	.3	.2	.1	.0

VSTAT.READY - availability of the actuator for acceptation of the position set point, during the adaptation this flag is in log.0

VSTAT.RUN	 signalling of the engine operation (position adjusting)
VSTAT.FS	- frost protection, opens drive to the maximum, setpoint of actuator
	position is not accepted
VSTAT.SERVICE	- service mode of module (it is activated by MAN button on the module, actuator is opened at maximum), the desired actuator position is not accepted


VSTAT.POSITION - actual position of the actuator (type real) [%]

Output data

VCONT

VCONT

- actuator control commands (8x type bool)

INIT - activation of the drive adaptation mode (from the leading edge), for a period of adaptation is the flag VSTAT.READY is in log.0

VCONT.POSITION - set point of the actuator position (type real) [0÷100%]

3.11.3. Module specifics

After connecting the module to the CIB bus the module perform automatic adaptation of actuator with the valve. Adaptation can also be caused by setting the user flag *VCONT.INIT*, or by the MAN service button on the module. MAN button is available after removing the plastic cover cap. After pressing and releasing it in the interval 1.5s after the required number of flashes of green LED SET one of the actions that are described in the following table can be called.

Number of flashes	Action
2	opening the actuator for 100% (designed for disassembly / assembly the actuator on the valve), the actuator remains open until the call of adaptation procedure or until the restart.
3	performing the adaptation of actuator with the valve

The module has implemented automatic antifreeze protection function. If the internal temperature sensor evaluates temperature lower than +5 $^{\circ}$ C, the actuator (valve) is opened to 100%. At the same time the flag desired position of the variable *VSTAT.FS* is set and the desired position from the variable *VCONT.POSITION* is not accepted by the module.

3.11.4. Installation

Terminals for connection on the CIB bus and for connection of external sensors are available after removing the plastic cover (see basic documentation for the module).

During assembly / disassembly of the module on the valve is necessary to have the drive always in the open position (the plug is inserted back into the head, the opening can be done by pressing the MAN button, see above). After mounting the module on the valve it is **always necessary** to perform the adaptation of the module with the valve (adaptation can be done by the MAN button, by restart - disconnect the power supply - or by setting the flag *VCONT.INIT*, see above).

3.12. C-HM-0308M

The module contains 3 universal inputs (analog/digital) for dry contacts or resistive sensors, 2 current analog outputs (0÷10V) and 6 relay outputs. Analog inputs are configurable according to the type of sensor, relay outputs allow local manual control buttons on the module. Mechanical design corresponds to the modular design with width of 3M for mounting on the DIN-rail.

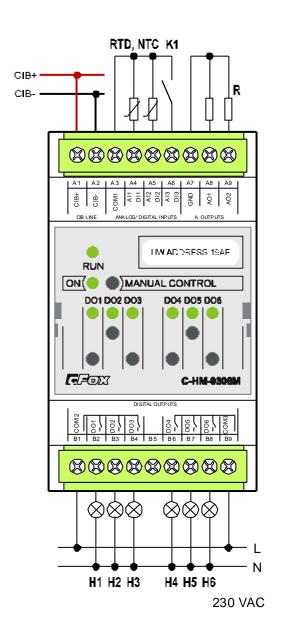


Fig. 3. 4 View and connection C-HM-0308M

Tab. 3.12 Basic param	neters C-HM-0308M
Binary inputs ¹⁾	
Quantity, type	3, NO contact
Input voltage	2,5V from internal power
	supply
Galvanic isolation	No
Analog inputs ¹⁾	
Quantity	3
Type of convertor	Approximation ,12 bit
Range of measurement	Pt1000 (-90/+320°C),
- resistor	Ni1000 (-60/+200°C),
	NTC12k (-40/+125°C),
	KTY81-121 (-55/+125°C),
	OV600k (0 ÷ 630kΩ),
*)	OV6M (0 ÷ 6,5MΩ),
- voltage ^{°)}	$2V(0 \div 2,1V),$
*) Available from version 1.4 of	$1V (0 \div 1,05V),$
module firmware	$100 \text{mV} (0 \div 105 \text{mV}),$
Error of input	50mV (0 ÷ 52,5mV)
Error of input	3% of full range,
Analog outputs	2
Quantity	2 Active veltage 8 bits
Type	Active, voltage, 8 bits
Range	0 ÷ 10,5V
Max. output current	10mA
Error of input	2% of full range,
Binary outputs	
Quantity	6 Cwitching roles:
Type Switched voltoge	Switching relay
Switched voltage	Max. 250V, min. 5V
Switched voltage	Max. 3A, min. 100mA
Galvanic isolation	Yes, also among the groups
Current of the common	Max. 10A
terminal of the group	
Protection against	External (RC circuit, diode,
inductive load	varistor)
Power supply	
Power supply and	24 V (27 V) from the CIB
communication	· · · ·
Max. power	90 mA
consumption	
Dimensions and weight	
Dimensions	90 × 58 × 53mm
Weight	125g
Operating and installation	
Operating temperature	0 ÷ +55 °C
Storage temperature	-25 ÷ +70 °C
IP degree of protection	IP10B
acc. IEC 529	wartiaal
Operating position	vertical
Type of operation	continuous
Installation	on DIN rail
Connection terminals Cross-section of wires	Screw-type, removable Max. 2,5 mm ²

1) Terminals for AI and DI are common (universal inputs)

3.12.1. Configuration

C-HM-0308M				×			
Nastavení analogových vstupů-							
AI1 : Typ vstupu	Pt1000 W100 = 1,385	•	Filtrace vstupu	0,0 🚖			
AI2 : Typ vstupu	Pt1000 W100 = 1,385	•	Filtrace vstupu	0,0 🚖			
AI3 : Typ vstupu	Pt1000 W100 = 1,385	•	Filtrace vstupu	0,0 🜻			
Nastavení binárních výstupů							
Nastavení blokace DO1 - DO3	Zmrazení aktuálního stavu	-	🔲 🥅 🖲 Blokovat manuální re	ežim			
Nastavení blokace DO4 - DO6	Zmrazení aktuálního stavu	-	📃 🔲 Blokovat manuální re	ežim			
Nastavení analogových výstupů							
Nastavení blokace AO1	Zmrazení	aktuá	lního stavu	<u> </u>			
Nastavení blokace AO2 Zmrazení aktuálního stavu							
			🗸 ок	🗶 Zrušit			

Fig. 3.5 Module configuration

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV600k (0 ÷ 630k Ω) OV6M (0 ÷ 6,5M Ω) 2V (0 ÷ 2,1V) 1V (0 ÷ 1,05V) 100mV (0 ÷ 105mV) 50mV (0 ÷ 50mV)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

x - the current value of the analog input

yt - output

- y_{t-1} recent output
- -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Block setting of DOx Block setting AOx

For binary outputs (groups of binary outputs) DO and for analog outputs AO can be set whether the module during transition into HALT mode freezes its outputs on the last state or whether the outputs has to be cleared.

Block of manual mode

Checking the box the ability of manual control of binary outputs (group of binary outputs) in RUN mode is blocked. In the HALT mode the manual control of binary outputs is allowed always.

In RUN mode, the manual control is activated by pressing the button *MANUAL CONTROL* on module. At the same time the yellow indicator LED lights up *ON*. Then it is possible to change the status of each output by respective buttons. Another pressing the button *MANUAL CONTROL* LED indicator *ON* goes off and the manual mode is cancelled. Then binary outputs are controlled according to the commands of the CIB line. Activity of manual mode is also indicated in the module status variable *STAT.ManMode*.

3.12.2. The structure of the transmitted data

Module contains 5 devices in total:

-	device 1,	input,	1*STAT	(status)
-	device 2,	input,	3*AI	
-	device 3,	input,	2*A0	
-	device 4,	input,	3*DI	
-	device 5,	input,	6*DO	

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis 📲	Alias	Svorka ⁴	Abs./délka	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
🖶 STAT : TCIB_CHM0308_STAT 🔓	MI_CIB1_IN~ID1_IN~STAT			%R204 / 1	\$00
🖨 AI : TCIB_AI3	MI_CIB1_IN~ID1_IN~AI				
-Al1 : BEAL -	MI_CIB1_IN~ID1_IN~AI~AI1			%RF205	0
-AI2 : REAL -	MI_CIB1_IN~ID1_IN~AI~AI2			%RF209	0
AI3 : REAL 😽	MI_CIB1_IN~ID1_IN~AI~AI3			%RF213	0
⊟-DI : TCIB_DI3	MI_CIB1_IN~ID1_IN~DI				\$00
-DI1 : BOOL 🗕	MI_CIB1_IN~ID1_IN~DI~DI1			%R217.0	0
—D12 : BOOL 😽	MI_CIB1_IN~ID1_IN~DI~DI2			%R217.1	0
DI3 : BOOL 🗕	MI_CIB1_IN~ID1_IN~DI~DI3			%R217.2	0
DILOUT : TMI_CIB1_ID1_OUT	MI_CIB1_OUT~ID1_OUT				
⊨-A0 : TCIB_A02	MI_CIB1_OUT~ID1_OUT~AO				
-A01 : REAL	MI_CIB1_OUT~ID1_OUT~AO~AO1			%RF218	0
A02 : REAL	MI_CIB1_OUT~ID1_OUT~AO~AO2			%RF222	0
DOS : TCIB_DO6	MI_CIB1_OUT~ID1_OUT~DOs				\$00
-DO1 : BOOL	MI_CIB1_OUT~ID1_OUT~DOs~DO1			%R226.0	0
-DO2 : BOOL	MI_CIB1_OUT~ID1_OUT~DOs~DO2			%R226.1	0
	MI_CIB1_OUT~ID1_OUT~DOs~DO3			%R226.2	0
DO4 : BOOL	MI_CIB1_OUT~ID1_OUT~DOs~DO4			%R226.3	0
	MI_CIB1_OUT~ID1_OUT~DOs~DO5			%R226.4	0
-DO6 : BOOL	MI_CIB1_OUT~ID1_OUT~DOs~DO6			%R226.5	0

CIB UNITS, MODULES

Fig. 3.6 The structure of the transmitted data

Input data

	STAT	TAT AI			DI					
STAT	- statu	- status byte of module (8x type bool)								
	PowerErr ManMode VLD3 OUF3 VLD2 OUF2 VLD1 OUF1									
	Bit	.7	.6	.5	.4	.3	.2	.1	.0	
OUFx	 OUFx - overflow / underflow of analog input measurement Alx VLDx - validity of reading of analog input Alx ManMode - signalling of manual mode of binary outputs. PowerErr - supply voltage drop below the limit for guaranteed switching of relay outputs DO 								witching	
Alx	 - value of analog inputs (3x type real) for temperature sensor temperature [°C] for resistor sensor OV600k resistor [kΩ] for resistor sensor OV6M resistor [MΩ] for voltage range voltage [mV] 									
Dlx	<i>x</i> - value of binary inputs (3x type bool)									
Output data										

AOx - value of analog outputs (2x type real) [%]

DOx - value of binary outputs (6x type bool)

3.13. C-HM-1113M

Module contains 8 binary inputs for dry contacts, 3 analog inputs for resistor sensors, 2 voltage analog outputs $(0\div10V)$ and 11 relay outputs. Analog inputs are configurable according to the type of sensor, relay outputs allow local manual control buttons on the module. Mechanical design corresponds to the modular design with width of 6M for mounting on the DIN-rail.

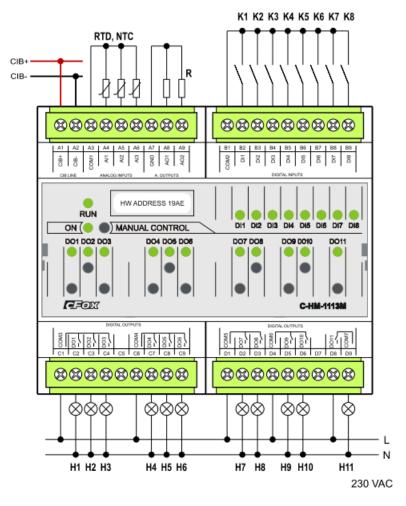


Fig. 3. 7 View and connection C-HM-1113M

Binary inputs					
Quantity, type	NO contacts				
Input voltage		0V from internal power			
		upply			
Galvanic isolation	N	0			
Binary outputs	-				
Quantity	11				
Туре		ritching relay			
Switched voltage	Ma	x. 250V, min. 5V			
Switched current		x. 3A, min. 100mA,			
		011 max. 10A			
Galvanic isolation		s, even among groups,			
		h the exception of			
	DM5 and COM6				
		Max. 10A			
common terminal of					
the group	_				
Protection against	ternal (RC circuit, diode,				
inductive load varistor)					
Analog outputs					
Quantity		2			
Туре		Active, voltage, 8 bits			
Range		0 ÷ 10,5V			
Max. output current		10mA			
Error of output		2% of full range,			
Power supply					
Power supply and		24 V (27 V) from the			
communication		CIB			
Max. power		160 mA			
consumption					

Tab. 3.13 Basic parameters C-HM-1113M

Analog inputs						
Quantity	3					
Type of convertor	Approximation ,12 bit					
Range of measurement						
- resistor	Pt1000 (-90/+320°C),					
	Ni1000 (-60/+200°C),					
	NTC12k (-40/+125°C),					
	KTY81-121(-55/+125°C)					
	OV600k (0 ÷ 630kΩ),					
	OV6M (0 ÷ 6,5MΩ),					
- voltage ^{*)}	2V (0 ÷ 2,1V),					
0	1V (0 ÷ 1,05V),					
	100mV (0 ÷ 105mV),					
	50mV (0 ÷ 52,5mV)					
Error of input	3% of full range,					

*) Available from version 1.5 of module firmware

Dimensions and weight						
Dimensions	90 × 58 × 105mm					
Weight	270g					
Operating and installation conditions						
Operating temperature	0 ÷ +55 °C					
Storage temperature	-25 ÷ +70 °C					
IP degree of protection	IP10B					
acc. IEC 529						
Operating position	vertical					
Type of operation	Continuous					
Installation	on DIN rail					
Connection terminals	Screw-type, removable					
Cross-section of wires	Max. 2,5 mm ²					

3.13.1. Configuration

C-HM-1113M					٥			
Nastavení analogových vstupů								
AI1 : Typ vstupu	Pt1000 W100 = 1,38	5 💌	Filtra	ce vstupu	0,0 🚖			
AI2 : Typ vstupu	Pt1000 W100 = 1,38	5 🔽	Filtra	ce vstupu	0,0 🜲			
AI3 : Typ vstupu	Pt1000 W100 = 1,38	5 💌	Filtra	ce vstupu	0,0 👤			
Nastavení binárních výstupů								
Nastavení blokace DO1 - DO3	Zmrazení aktuálního) stavu	•	Blokovat manuální re	ežim			
Nastavení blokace DO4 - DO6	Zmrazení aktuálního	o stavu	•	Blokovat manuální re	ežim			
Nastavení blokace DO7 - DO8	Zmrazení aktuálního	o stavu	•	Blokovat manuální re	ežim			
Nastavení blokace DO9 - DO1(Zmrazení aktuálního	o stavu	•	Blokovat manuální re	ežim			
Nastavení blokace DO11	Zmrazení aktuálního	o stavu	•	Blokovat manuální re	ežim			
Nastavení analogových výstupů								
Nastavení blokace AO1 Zmrazení aktuálního stavu								
Nastavení blokace AO2		Zmrazení akt	uálního :	stavu	-			
				🗸 ок	🗶 Zrušit			

Fig. 3.8 Module configuration

Type of input

Choosing the type of analog input:

```
Pt1000, W_{100} = 1,385, -90/+320°C

Pt1000, W_{100} = 1,391, -90/+320°C

Ni1000, W_{100} = 1,617, -60/+200°C

Ni1000, W_{100} = 1,500, -60/+200°C

NTC 12k (negative thermistor, 12k\Omega at 25°C), -40/+125°C

KTY 81-121, -55/+125°C

OV600k (0 ÷ 630k\Omega)

OV6M (0 ÷ 6,5M\Omega)

2V (0 ÷ 2,1V)

1V (0 ÷ 1,05V)

100mV (0 ÷ 105mV)

50mV (0 ÷ 50mV)
```

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

Х	- the current value of the analog input
Уt	- output
y t-1	- recent output
ζ	-time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Block setting of DOx Block setting AOx

For binary outputs (groups of binary outputs) DO and for analog outputs AO can be set whether the module during transition into HALT mode freezes its outputs on the last state or whether the outputs has to be cleared.

Block of manual mode

Checking the box the ability of manual control of binary outputs (group of binary outputs) in RUN mode is blocked. In the HALT mode the manual control of binary outputs is allowed always.

In RUN mode, the manual control is activated by pressing the button *MANUAL CONTROL* on module. At the same time the yellow indicator LED lights up *ON*. Then it is possible to change the status of each output by respective buttons. Another pressing the button *MANUAL CONTROL* LED indicator *ON* goes off and the manual mode is cancelled. Then binary outputs are controlled according to the commands of the CIB line. Activity of manual mode is also indicated in the module status variable *STAT.ManMode*.

3.13.2. The structure of the transmitted data

Module contains 5 devices in total:

-	device	1,	input,	1*STAT	(status)
-	device	2,	input,	3*AI	
-	device	З,	output,	2*A0	
-	device	4,	output,	8*DI	
-	device	5,	output,	11*DO	

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat		Úplný zápis	Alias	Svorka	Abs./délka	Hodna
∃ID1_IN : TMI_CIB1_ID1_IN		MI_CIB1_IN~ID1_IN				
🖶 STAT : TCIB_CHM0308_STAT		MI_CIB1_IN~ID1_IN~STAT			%R204 / 1	\$00
🗗 AI : TCIB_AI3		MI_CIB1_IN~ID1_IN~AI				
-AI1 : REAL		MI_CIB1_IN~ID1_IN~AI~AI1			%RF205	0
-AI2 : REAL		MI_CIB1_IN~ID1_IN~AI~AI2			%RF209	0
AI3 : REAL		MI_CIB1_IN~ID1_IN~AI~AI3			%RF213	0
□ - DI : TCIB_DI8		MI_CIB1_IN~ID1_IN~DI				\$00
-DI1 : BOOL		MI_CIB1_IN~ID1_IN~DI~DI1			%R217.0	0
		MI_CIB1_IN~ID1_IN~DI~DI2			%R217.1	0
		MI_CIB1_IN~ID1_IN~DI~DI3			%R217.2	0
-DI4 : BOOL		MI_CIB1_IN~ID1_IN~DI~DI4			%R217.3	0
DI5 : BOOL		MI_CIB1_IN~ID1_IN~DI~DI5			%R217.4	0
		MI_CIB1_IN~ID1_IN~DI~DI6			%R217.5	0
		MI_CIB1_IN~ID1_IN~DI~DI7			%R217.6	0
D18 : BOOL		MI_CIB1_IN~ID1_IN~DI~DI8			%R217.7	0
ID1_OUT : TMI_CIB1_ID1_OUT		MI_CIB1_OUT~ID1_OUT				
⊨-A0 : TCIB_A02		MI_CIB1_OUT~ID1_OUT~AO				
	•	MI_CIB1_OUT~ID1_OUT~A0~A01			%RF218	0
A02 : REAL	•	MI_CIB1_OUT~ID1_OUT~A0~A02			%RF222	0
E-DOs : TCIB_D011		MI_CIB1_OUT~ID1_OUT~DOs				\$0000
-D01 : BOOL	•	MI_CIB1_OUT~ID1_OUT~DOs~DO1			%R226.0	0
-DO2 : BOOL	•	MI_CIB1_OUT~ID1_OUT~DOs~DO2			%R226.1	0
	•	MI_CIB1_OUT~ID1_OUT~DOs~DO3			%R226.2	0
-DO4 : BOOL	•	MI_CIB1_OUT~ID1_OUT~D0s~D04			%R226.3	0
-DO5 : BOOL	•	MI_CIB1_OUT~ID1_OUT~D0s~D05			%R226.4	0
	•	MI_CIB1_OUT~ID1_OUT~DOs~DO6			%R226.5	0

Fig. 3.9 The structure of the transmitted data

Input data

[STAT	AI			DI				
STAT	- status byte of module (8x type bool)								
	[PowerErr	ManMode	VLD3	OUF3	VLD2	OUF2	VLD1	OUF1
	Bit	.7	.6	.5	.4	.3	.2	.1	.0
OUFx	VLD	x - vali	rflow of ana dity of read malling of m	ing of a	nalog inp	out Alx		tputs.	

PowerErr - supply voltage drop below the limit for guaranteed switching of relay outputs DO

Alx - value of analog inputs (3x type real) [°C] [k Ω] [M Ω] [mV]

Dlx - value of binary inputs (8x type bool)

Output data

	AO	DOs
--	----	-----

AOx - value of analog outputs (2x type real) [%]

DOx - value of binary outputs (11x type bool)

3.14. C-HM-1121M

Module contains 8 binary inputs for dry contacts, 3 analog inputs for resistor sensors, 2 voltage analog outputs $(0\div10V)$ and 19 relay outputs. Analog inputs are configurable according to the type of sensor, relay outputs allow local manual control buttons on the module. Mechanical design corresponds to the modular design with width of 9M for mounting on the DIN-rail.

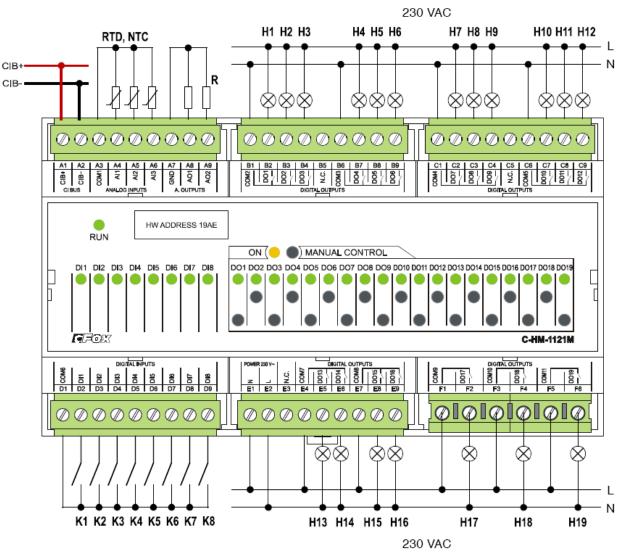


Fig. 3. 10 View and connection C-HM-1121M

Tab. 3.14 Basic parameters C-HM-1121M

Analog outputs	
Quantity	2
Туре	Active, voltage, 8 bits
Range	0 ÷ 10,5V
Max. output current	10mA
Error of input	2% of full range,
Power supply	
Power supply	230 V AC, +/- 10%
Max. power	60 mA
consumption	

Binary outputs	
Quantity	19
Туре	Switching relay
Switched voltage	Max. 250V AC, 30V DC, Min. 5V
Switched current	Max. 3A, min. 100mA, DO17-DO19 max. 16A
Galvanic isolation	Yes, even among groups, with the exception of COM7 and COM8
Current of the common terminal of the group	Max. 10A
Protection against inductive load	External (RC circuit, diode, varistor)

Quantity	3
Type of convertor	Approximation ,12 bit
ange of measurement	
resistor	Pt1000 (-90/+320°C),
	Ni1000 (-60/+200°C),
	NTC12k (-40/+125°C),
	KTY81-121(-55/+125°C)
	OV600k (0 ÷ 630kΩ),
	OV6M (0 ÷ 6,5MΩ),
	2V (0 ÷ 2,1V),
voltage ^{*)}	1V (0 ÷ 1,05V),
5	100mV (0 ÷ 105mV),
	50mV (0 ÷ 52,5mV)
rror of input	3% of full range,

Binary inputs	
Quantity	8
Туре	NO contact
Input voltage	10V from internal
	power supply
Galvanic isolation	No
Dimensions and weight	
Dimensions	157 × 90 × 58mm
Weight	450g
Operating and installation	on conditions
Operating temperature	-10 ÷ +55 °C
Storage temperature	-25 ÷ +70 °C
IP degree of protection	IP10B
acc. IEC 529	
Operating position	vertical
Type of operation	Continuous
Installation	on DIN rail
Connection terminals	Screw-type,
	removable
Cross-section of wires	Max. 2,5 / 4 mm ²

3.14.1. Configuration

C-HM-1121M						×	
Nastavení analogových vstupů							
AI1 : Typ vstupu	Pt1000 W100 = 1,38	5 🗾	Filtrac	e vstupu	0,0	•	
AI2 : Typ vstupu	Ni1000 W100 = 1,61	7 💌	Filtrac	e vstupu	0,0	•	
AI3 : Typ vstupu	NTC-12k	•	Filtrac	e vstupu	0,0	•	
Nastavení binárních výstupů							
Nastavení blokace DO1 - DO3	Zmrazení aktuálníh	o stavu 🖉 💌] 🗆	Blokovat manuální re	žim		
Nastavení blokace DO4 - DO6	Nulování/odepnutí	výstupu 🖉] [Blokovat manuální re	žim		
Nastavení blokace DO7 - DO9	Zmrazení aktuálního	o stavu 💌] [Blokovat manuální re	žim		
Nastavení blokace DO10 - DO1	Zmrazení aktuálníh	o stavu 💌] [Blokovat manuální re	žim		
Nastavení blokace DO13 - DO1	Zmrazení aktuálníh	o stavu 💌] [Blokovat manuální re	žim		
Nastavení blokace DO17	Zmrazení aktuálního	o stavu 💽		Blokovat manuální re	žim		
Nastavení blokace DO18	Zmrazení aktuálního	o stavu 💽		Blokovat manuální re			
Nastavení blokace DO19	Zmrazení aktuálního	o stavu 💌] [Blokovat manuální re	žim		
Nastavení analogových výstupů							
		a (1)				_	
Nastavení blokace AO1		Zmrazení aktuá				41	
Nastavení blokace AO2		Nulování/odepi	nutí výs	itupu		_	
				🗸 ок	🗶 Z	rušit	

Fig. 3.11 Module configuration

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV600k (0 ÷ 630k Ω) OV6M (0 ÷ 6,5M Ω) 2V (0 ÷ 2,1V) 1V (0 ÷ 1,05V) 100mV (0 ÷ 105mV) 50mV (0 ÷ 50mV)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

х	- the current value of the analog input
Уt	- output
Уt-1	- recent output
ζ	-time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Blocking of DOx Blocking of AOx

It can be set for binary outputs (groups of binary outputs) DO and for analog outputs AO if they should stay in their last state or they should be disconnected during transition into HALT mode.

Blocking of manual mode

Checking the box the ability of manual control of binary outputs (group of binary outputs) in RUN mode is blocked. In the HALT mode the manual control of binary outputs is allowed always.

In RUN mode, the manual control is activated by pressing the button *MANUAL CONTROL* on module. At the same time the yellow indicator LED lights up *ON*. Then it is possible to change the status of each output by respective buttons. Another pressing the button *MANUAL CONTROL* LED indicator *ON* goes off and the manual mode is cancelled. Then binary outputs are controlled according to the commands of the CIB line. Activity of manual mode is also indicated in the module status variable *STAT.ManMode*.

3.14.2. The structure of the transmitted data

Module contains 5 devices in total:

-	device	1,	input,	1*STAT	(status)
-	device	2,	input,	3*AI		
-	device	З,	output,	2*A0		
-	device	4,	input,	8*DI		
-	device	5,	output,	19*DO		

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

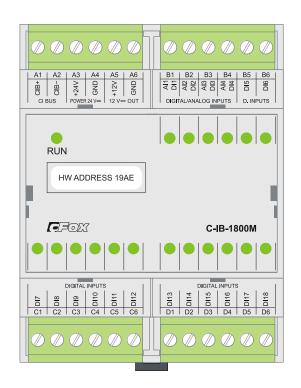
Struktura dat		Úplný zápis 🏾 🎙	Alias	Svorka	Abs./délka	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN		MI_CIB1_IN~ID1_IN				
	÷.	MI_CIB1_IN~ID1_IN~STAT			%R204 / 1	\$00
🛱 AI : TCIB_AI3		MI_CIB1_IN"ID1_IN"AI				
AI1 : REAL	÷.	MI_CIB1_IN~ID1_IN~AI~AI1			%RF205	0
-AI2 : REAL	<mark>ب</mark>	MI_CIB1_IN~ID1_IN~AI~AI2			%RF209	0
AI3 : REAL	÷.	MI_CIB1_IN~ID1_IN~AI~AI3			%RF213	0
Ė-DI ∶TCIB_DI8		MI_CIB1_IN~ID1_IN~DI				\$00
-DI1 : BOOL	<mark>ب</mark>	MI_CIB1_IN~ID1_IN~DI~DI1			%R217.0	0
— D12 : BOOL	<mark>ب</mark>	MI_CIB1_IN~ID1_IN~DI~DI2			%R217.1	0
— DI3 : BOOL	÷	MI_CIB1_IN~ID1_IN~DI~DI3			%R217.2	0
-DI4 : BOOL	÷	MI_CIB1_IN~ID1_IN~DI~DI4			%R217.3	0
	<mark>ب</mark>	MI_CIB1_IN~ID1_IN~DI~DI5			%R217.4	0
	÷.	MI_CIB1_IN~ID1_IN~DI~DI6			%R217.5	0
— D17 : BOOL	÷	MI_CIB1_IN~ID1_IN~DI~DI7			%R217.6	0
DI8 : BOOL	<mark>ب</mark>	MI_CIB1_IN~ID1_IN~DI~DI8			%R217.7	0
□ ID1_OUT : TMI_CIB1_ID1_OUT		MI_CIB1_OUT~ID1_OUT				
⊨ AO : TCIB_AO2		MI_CIB1_OUT~ID1_OUT~AO				
	Ċ	MI_CIB1_OUT~ID1_OUT~A0~A01			%RF218	0
-402 : REAL	Ċ	MI_CIB1_OUT~ID1_OUT~A0~A02			%RF222	0
	<u> </u>	MI_CIB1_OUT~ID1_OUT~DOs			%R226/3	

Fig. 3.12 The structure of the transmitted data

Input data

[STAT		AI		DI				
STAT	- statu	s byte of mo	odule (8x ty	rpe boo	l)				
]	PowerErr	ManMode	VLD3	OUF3	VLD2	OUF2	VLD1	OUF1
	Bit	.7	.6	.5	.4	.3	.2	.1	.0
		x - valid Mode - sign erErr - supp	•	ng of ar anual c drop be	nalog inp ontrol m	out Alx ode of b	inary ou	tputs.	vitching
Alx	- value	of analog i	nputs (3x ty	ype rea	l) [°C] [k	Ω] [ΜΩ]	[mV]		
DIx	- value	of binary in	nputs (8x ty	pe bool)				

Output data


	AO	DOs
AOx	- value of analog ou	tputs (2x type real) [%]
DOx	- value of binary out	puts (19x type bool)

3.15. C-IB-1800M

The module contains a total of 18 binary inputs for potential-free normally open contacts. Each of these inputs can also be configured as an alarm input for security technology. Additionally four inputs can also be used either as the analog input for connection of resistive sensors or as the counter input for counting pulses from meters (standard interface S0 according to IEC 61393 / DIN 43864).

After connecting the module to the CIB line (power connected) the green RUN LED lights still. If the module is served by the CIB (it communicates), green RUN LED flashes regularly. The module can be powered from an external 24V DC source (not to overload CIB line). The module also provides power output 12V DC (supply security detectors etc.).

Mechanical design corresponds to the modular design with width of 4M for mounting on the DIN-rail.

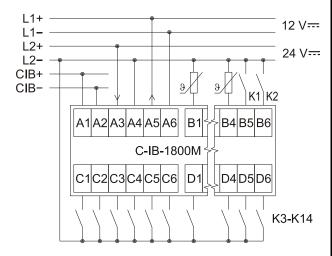


Fig. 3. 13 View and connection C-IB-1800M

Tab. 3.15 Basic parar	neters C-IB-1800M					
Universal inputs DI/AI/I	EZS/COUNT (1 ÷ 4)					
Quantity	4					
Optional input type	binary, analog, pulse counter, balanced inputs					
Universal inputs DI/EZS						
Quantity	14					
Optional input type	binary, balanced input					
- Binary						
Туре	NO contact (0/1) (Normally Open)					
- Analog						
Pt1000	–90 ÷ +320 °C					
Ni1000	–60 ÷ +200 °C					
NTC 12kΩ	–40 ÷ +125 °C					
KTY81-121	–55 ÷ +125 °C					
Resistance input	0 ÷ 160 kΩ					
Resolution, Accuracy	0.1 °C / 10Ω, 0.5 %					
Period of refresh Al	typically 5s					
- EZS - for security systems						
Simply balanced	Resistor in the loop 1 x 2k2					
Double balanced	Resistor in the loop 2 x 1k1					
 Pulse counter (standard interface S0, IEC 61393) 						
Min. pulse width	30ms					
Max. pulse frequency	20Hz					
The period of reading	typically 5s					
Power supply						
Power supply and communication	24 V (27 V) from the CIB					
Max. power consumption from CIB line	140 mA					
External power	24V DC, max. 230 mA					
Power supply output	12V DC, max.150 / 250mA*)					
Dimensions and weigh						
Dimensions	70 x 91 x 58 mm					
Weight	160 g					
Operating and installat						
Operating temperature	-10 ÷ +55 °C					
Storage temperature	-25 ÷ +70 °C					
IP degree of protection acc. IEC 529	IP10B					

Cross-section of wires Max. 2,5 mm² *) 150mA supplying from CIB, 250mA supplying from external 24V

Ш

1

arbitrary

on DIN rail

Overvoltage category

Connection terminals

Degree of pollution

Operating position

Installation

(according to EN 60664)

(according to EN 60664)

Screw-type, removable

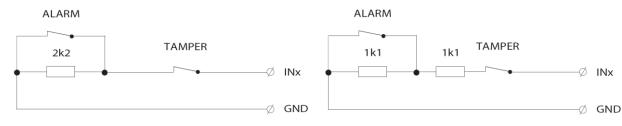


Fig. 3. 14 Simply balanced input for security detectors Fig. 3. 15 Double-balanced input for security detectors

3.15.1. Configuration

C-IB-1800M				×
Nastavení binárních vstupů				
 DI1 : Vyvážený vstup (za DI2 : Vyvážený vstup (za DI3 : Vyvážený vstup (za DI4 : Vyvážený vstup (za DI5 : Vyvážený vstup (za DI6 : Vyvážený vstup (za DI7 : Vyvážený vstup (za DI8 : Vyvážený vstup (za DI8 : Vyvážený vstup (za DI9 : Vyvážený vstup (za 	abezpečovačka) abezpečovačka) abezpečovačka) abezpečovačka) abezpečovačka) abezpečovačka) abezpečovačka)	DI2 DI3 DI4 DI5 DI6 DI7 DI8	 Vstup má dvojité vyvážení 	
 DI10 : Vyvážený vstup (z DI11 : Vyvážený vstup (z DI12 : Vyvážený vstup (z DI13 : Vyvážený vstup (z DI14 : Vyvážený vstup (z DI15 : Vyvážený vstup (z DI16 : Vyvážený vstup (z DI16 : Vyvážený vstup (z DI17 : Vyvážený vstup (z DI18 : Vyvážený vstup (z Prodleva vyhodnocení dlouhé 	abezpečovačka) abezpečovačka) abezpečovačka) abezpečovačka) abezpečovačka) abezpečovačka) abezpečovačka)	DI11 DI12 D113 D114 D115 D116 D117	 Vstup má dvojité vyvážen 	
	no susku	1.4	<u> </u>	
Nastavení analogových vstupů				
AI1 : Typ vstupu	Pt1000 W100 = 1,385	-	Filtrace vstupu	0,0 🍨
AI2 : Typ vstupu	Pt1000 W100 = 1,385	-	Filtrace vstupu	0,0 🚖
AI3 : Typ vstupu	Pt1000 W100 = 1,385	•	Filtrace vstupu	0,0
AI4 : Typ vstupu	Pt1000 W100 = 1,385	•	Filtrace vstupu	0,0
			🗸 ок	🗙 Zrušit

Fig. 3.16 Module configuration

The input terminals DI/AIx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. *2.1 Master configuration*, check the box *Show units, devices*

Balanced input

By checking the item, the respective input will be evaluated as a simple balanced binary alarm input. If the item is not checked, the respective input evaluated as a normal binary input (on/off).

Double balanced input

By checking the item, respective input will be evaluated as a double balanced binary alarm input. If the item is not checked and the input is configured for security systems (balanced input), the respective input evaluated as alarm input with a simple balance.

Delay, evaluation of long press

For binary (momentary button) inputs module directly evaluate the short and long presses on each input. By entering values one can set a delay time after which the activation of digital input DI is signalled as the long press (PRESS). Activating the digital input for period shorter than the entered value will be signalled by as the short press (CLICK). Delay period (T_{press}) can be inserted in the range 0.1÷2.5s.

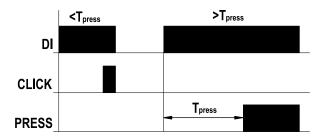


Fig. 3. 17 Evaluation of short / long press

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160k Ω) 16-bit pulse counter, S0

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

x - the current value of the analog input

y t	- output
------------	----------

- y_{t-1} recent output
- -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

3.15.1. The structure of the transmitted data

Module contains 6 devices in total:

-	device	1,	input,	18*DI/EZS	
-	device	2,	input,	1*STAT	(status)
-	device	З,	input,	1*AI	(AI1)
-	device	4,	input,	1*AI	(AI2)
-	device	5,	input,	1*AI	(AI3)
-	device	6,	input,	1*AI	(AI4)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis 🏾 🏾	Alias	Svorka 4	Abs./délka4	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
DIS : TCIB_CIB1800M	MI_CIB1_IN~ID1_IN~DIs				
🕀 -DI : TCIB_DI18 🛛 🗛	MI_CIB1_IN~ID1_IN~DIs~DI			%R4/3	
🕀 -CLICK : TCIB_CLICK18 🗛	MI_CIB1_IN~ID1_IN~DIs~CLICK			%R7/3	
🕀 PRESS : TCIB_PRESS18 🗛	MI_CIB1_IN~ID1_IN~DIs~PRESS			%R10/3	
	MI_CIB1_IN~ID1_IN~DIs~TAMPER			%R13/3	
🗄 – STAT : TCIB_AI4_STAT 💦 🗛	MI_CIB1_IN~ID1_IN~STAT			%R16/1	\$00
-AI1 : REAL	MI_CIB1_IN~ID1_IN~AI1			%RF17	0
AI2 : REAL	MI_CIB1_IN~ID1_IN~AI2			%RF21	0
AI3 : REAL	MI_CIB1_IN~ID1_IN~AI3			%RF25	0
-AI4 : REAL	MI_CIB1_IN~ID1_IN~AI4			%RF29	0

Fig. 3.18 The structure of the transmitted data

Input data

	DIs	STAT	-	Al1	Al	2	Al3	Al4	
DIs.DI	<i>DIs.DI</i> - current statuses of binary inputs (18x type bool)								
		DI18	DI17			DI2	DI1		
	Bit	.17	.16			.1	.0		
Dis CLIC	DI:					•	/ alarm inpu	ut x	
DISIOLIC	DIs.CLICK - current statuses of binary inputs (18x type bool) CLICK18 CLICK17 CLICK2 CLICK1								

CLICKx - short pulse (to log. 1) on binary input (button) x

.1

.0

DIs.PRESS - long presses on binary inputs (18x type bool)

 PRESS18
 PRESS17

 PRESS2
 PRESS1

 Bit
 .17
 .16
 .1
 .0

PRESSx - long pulse (into log. 1) on binary input (button) x

DIs. TAMPER - statuses of tamper at balanced inputs (18x type bool)

	TAMPER18	TAMPER17	 TAMPER2	TAMPER1
Bit	.17	.16	 .1	.0

TAMPERx - tamper status on balanced input x

STAT - status byte of analog inputs (8x type bool)

	VLD4	OUF4	VLD3	OUF3	VLD2	OUF2	VLD1	OUF1
Bit	.7	.6	.5	.4	.3	.2	.1	.0

OUFx - overflow / underflow of range of analog input Alx VLDx - validity of reading of analog input Alx

- Al1 value of analog input Al1/pulse counter 1 (type real) [°C],[kΩ]
- Al2 value of analog input Al2/pulse counter 2 (type real) [°C],[k Ω]
- Al3 value of analog input Al3/pulse counter 3 (type real) [°C],[k Ω]

Al4 - value of analog input Al4/pulse counter 4 (type real) [°C],[k Ω]

The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range 160k Ω is transferred in k Ω (with resolution of 10 Ω). If the input is configured as the 16-bit pulse counter the value corresponds to the counter status (restart the module resets the counter value).

3.16. C-IR-0202S

The module includes one relay output, one analog output (0-10V) and 2 universal inputs. Each of the universal inputs can be used by either the binary input for potential free contacts or as a balanced input for alarm detectors (security systems) or as the analog input for connecting a resistance or temperature sensor.

The mechanical design of the module is designed to be mounted under cover of device (ingress protection of the module IP10B). Signals of the module are available on ribbon cable. Outputs of relay contacts are led out on two separate wires with increased insulation.

signalling green RUN LED is accessible from the side of module opposite to ribbon cable. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

For sensors Pt1000, Ni1000, KTY81-121, and sensor TC and TZ (thermistor NTC12k) module performs the conversion and linearization of measured values directly to temperature. For other types of resistors (in range 0 to 160 k Ω) the conversion to the temperature has to be done in user program in CPU (module gives the value in k Ω , with resolution 10 Ω).

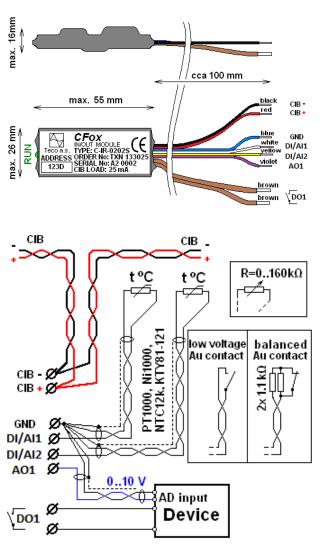


Fig. 3. 19 View and connection C-IR-0202S

Tab. 3.16 Basic parameters C-IR-0202S			
Universal inputs			
Quantity	2		
Optional input type	Binary, balanced, Pt1000, Ni1000, NTC12kΩ, KTY81- 121, resistance 160kΩ		
Binary input	NO contact (0/1) (Normally Open)		
Balanced input for	Resistance 1x2k2, or 2x1k1		
security detectors			
Pt1000	–90 ÷ +320 °C		
Ni1000	–60 ÷ +200 °C		
NTC 12kΩ	–40 ÷ +125 °C		
KTY81-121	–55 ÷ +125 °C		
Resistance input	0 ÷ 160kΩ		
Resolution, Accuracy	0.1 °C / 10Ω, 0.5%		
Period of refresh Al	typically 5s		
Binary relay output			
Type, contact material,	normally open contact		
max. current	(NO), Ag-Ni, 5A		
Max. switching power	750VA / 90W		
Max. switched voltage	277VAC / 30VDC		
Analog output			
Type, nominal voltage U _{im}	Voltage, 0 ÷ 10V		
Adjustable range	0 ÷ 130% U _{im}		
Minimal resolution	1%		
Power supply			
Power supply and communication	24 V (27 V) from the CIB		
Nominal/max. power consumption	18 / 25 mA		
Galvanic isolation	Only output relay contact		
Dimensions and weight	· · · · · · · · · · · · · · · · · · ·		
Dimensions	max. 55 × 26 × 20mm		
Weight	7 g		
Operating and installation			
Operating temperature	0 ÷ +55 °C		
Storage temperature	-25 ÷ +70 °C		
IP degree of protection acc. IEC 529	IP10B		
Overvoltage category	II (according to EN 60664)		
Degree of pollution	1 (according to EN 60664)		
Operating position	arbitrary		
Installation			
Туре	under cover of device		
Connecting	Ribbon cable 0.15 / 0.5mm ²		
	1		

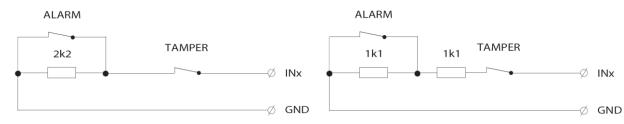


Fig. 3. 20 Simply balanced input for security detectors Fig. 3. 21 Double-balanced input for security detectors

3.16.1. Configuration

C-IR-02025				×
Nastavení binárních vstupů				
🔲 DI1 : Vyvážený vstup (za	bezpečovačka)	🔲 Vstup	o má dvojité vyvážení	
🔽 DI2 : Vyvážený vstup (za	bezpečovačka)	🔽 Vstup	o má dvojité vyvážení	
∟ ⊢Nastavení analogových vstupů				
AI1 : Typ vstupu	Pt1000 W100 = 1,38	5 💌	Filtrace vstupu	0,0 🚖
AI2 : Typ vstupu	Ni1000 W100 = 1,500) 💌	Filtrace vstupu	0,0 👤
Nastavení binárních výstupů				
Nastavení blokace		Zmrazení aktuá	álního stavu	•
Nastavení analogových výstup	ů			
Nastavení blokaceAO1		Zmrazení aktuá	álního stavu	
			🗸 ок	🗶 Zrušit

Fig. 3.22 Module configuration

The input terminals DI/AIx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. 2.1 Master configuration, check the box Show units, devices

Balanced input

By checking the item, the respective input will be evaluated as a simple balanced binary alarm input. If the item is not checked, the respective input evaluated as a normal binary input (on/off).

Double balanced input

By checking the item, respective input will be evaluated as a double balanced binary alarm input. If the item is not checked and the input is configured for security systems (balanced input), the respective input evaluated as alarm input with a simple balance.

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160k Ω)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

x - the current value of the analog input

y_t - output

- y_{t-1} recent output
- -time constant of the 1st order filter (TAU)

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

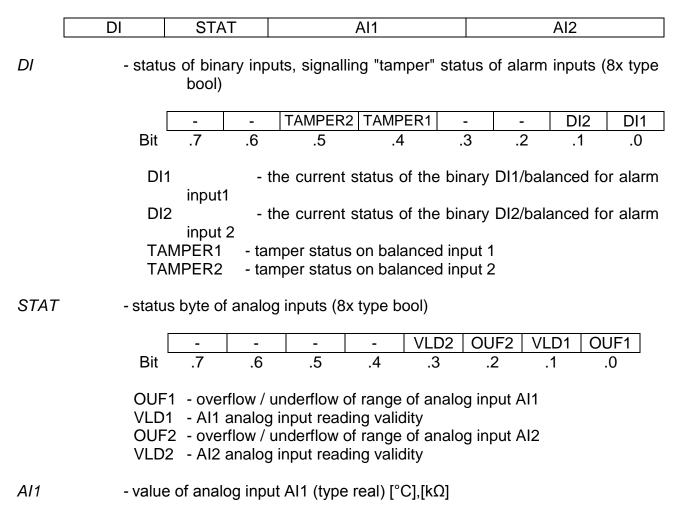
Blocking of DO1 Blocking of AO1

It can be set for binary outputs and for analog output AO1 if they should stay in their last state or they should be disconnected during transition into HALT mode.

3.16.2. The structure of the transmitted data

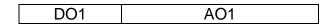
Module contains 5 devices in total:

-	device 1,	input/output,	2*DI,EZ	S/1*DO
-	device 2,	output,	1*A0	
-	device 3,	input,	1*STAT	(status AIx)
-	device 4,	input,	1*AI	(input AI1)
-	device 5,	input,	1*AI	(input AI2)


The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon $\boxed{10}$ in toolbar.

🎋 Nastavení V/V - Konfiguraci nelze měnit								
IEC 💑 💑 💑 DEC EXP HEX	K BIN STR 📑 🛅			6:3	S102			
○ RM0								
0 CP-1004 2 MI2-01M 3 IR-1057								
Struktura dat	Úplný zápis	Alias 🏾	Svorka	Abs./délka	Hodnota			
표 Statistic_MI_CIB1 🗄 TCHStatistic 🗛	r0_p2_Statistic_MI_CIB1			XX0 / 10				
Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1			%Y072	\$0000			
□ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN							
□- DI : TCIB_DI2T	MI_CIB1_IN~ID1_IN~DI				\$00			
—DI1 : BOOL 🎍	MI_CIB1_IN~ID1_IN~DI~DI1			%R204.0	0			
—DI2 : BOOL 🍒	MI_CIB1_IN~ID1_IN~DI~DI2			%R204.1	0			
—TAMPER1 : BOOL 🍒	MI_CIB1_IN~ID1_IN~DI~TAMPER1			%R204.4	0			
	MI_CIB1_IN~ID1_IN~DI~TAMPER2			%R204.5	0			
⊟-STAT ∶TCIB_AI2_STAT	MI_CIB1_IN~ID1_IN~STAT				\$00			
OUF1 : BOOL 🎍	MI_CIB1_IN~ID1_IN~STAT~OUF1			%R205.0	0			
	MI_CIB1_IN~ID1_IN~STAT~VLD1			%R205.1	0			
OUF2 : BOOL 🎍	MI_CIB1_IN~ID1_IN~STAT~OUF2			%R205.2	0			
-VLD2 : BOOL 🍒	MI_CIB1_IN~ID1_IN~STAT~VLD2			%R205.3	0			
Al1 : REAL 🛛	MI_CIB1_IN~ID1_IN~AI1			%RF206	0			
-AI2 : REAL	MI_CIB1_IN~ID1_IN~AI2			%RF210	0			
□ ID1_OUT : TMI_CIB1_ID1_OUT	MI_CIB1_OUT~ID1_OUT							
-DO1 : BOOL	MI_CIB1_OUT~ID1_OUT~DO1			%R222.0	0			
-A01 : REAL	MI_CIB1_OUT~ID1_OUT~A01			%RF223	0			

Fig. 3.23


The structure of the transmitted data

Input data

Al2- value of analog input Al2 (type real) [°C],[kΩ]The value of temperature sensor is transferred in °C (with resolution of
0.1°C), the value of general resistance in range 160kΩ is transferred in kΩ
(with resolution of 10Ω).

Output data

- *DO1* status of binary output (type bool)
- AO1 value of analog output (type real) [0-100%]

3.17. C-IR-0203M

The module includes two relay outputs, one analog output (PWM/0-10V) and 2 universal inputs. Each of the universal inputs can be used by either the binary input for potential free contacts or as a balanced input for alarm detectors (security systems) or as the analog input for resistance or temperature sensors.

Analog inputs are configurable according to the type of sensor. Mode of analog / PWM output is configurable by the switch on the module. Relay outputs allow local manual control by buttons on the module. Mechanical design corresponds to the modular design with width of 1.5M for mounting on the DIN-rail.

There is signalling green RUN LED on top of the module. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

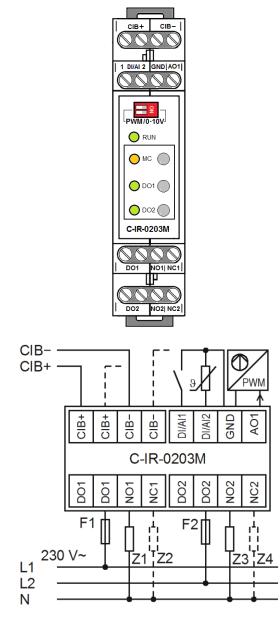


Fig. 3. 24 View and connection C-IR-0203M

Tab. 3.17 Basic	parameters C-IR-0203S				
Universal inputs					
Quantity	2				
Optional input type	Binary (button), balanced, Pt1000, Ni1000, NTC12kΩ,				
	KTY81-121, resistance				
	160kΩ				
Binary input	NO contact (0/1) (Normally				
	Open)				
Balanced input for security detectors	Resistance 1x2k2, or 2x1k1				
Pt1000	–90 ÷ +320 °C				
Ni1000	–60 ÷ +200 °C				
NTC 12kΩ	–40 ÷ +125 °C				
KTY81-121	–55 ÷ +125 °C				
Resistance input	0 ÷ 160kΩ				
Resolution, Accuracy	0.1 °C / 10Ω, 0.5 %				
Period of refresh Al	typically 5s				
Binary relay output					
Туре	changeover contacts				
Max. switched voltage	300V AC / 300V DC (min.5V)				
Switched current max.	16A/10A NO/NC (min.100mA)				
Max. switching power	4000VA / 384W				
Analog output					
Mode	Analog PWM				
Nominal voltage/amplitude	10V ±2% 10 ÷ 24V ±2%				
The repetition frequency	- 100 ÷ 2000Hz				
Adjustable range	0 ÷ 100% U _{jm}				
Minimal resolution	1%				
Power supply					
Power supply and	24 V (27 V) from the CIB				
communication					
	60 mA				
Max. power					
consumption					
Galvanic isolation	Only output relay contact				
Dimensions and weight					
Dimensions	105 × 90 × 22mm				
Weight	95 g				
Operating and installation					
Operating temperature	0 ÷ +55 °C				
Storage temperature	-25 ÷ +70 °C				
IP degree of protection acc. IEC 529	IP10B				
Overvoltage category	II (according to EN 60664)				
Degree of pollution	1 (according to EN 60664)				
Operating position	vertical				
Installation					
Connection terminals	Screw-type				
Cross-section of wires	Max. 2,5 mm ²				

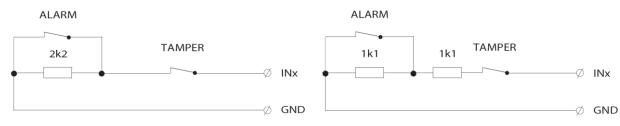


Fig. 3. 25 Simply balanced input for security detectors Fig. 3. 26 Double-balanced input for security detectors

3.17.1. Configuration

C-IR-0203M				×
Nastavení binárních vstupů				
🔲 IN1 : Vyvážený vstup (zabezpeč	ovačka) 🛛 🗸	Vstup má dvojité vy	vážení	
🔲 IN2 : Vyvážený vstup (zabezpeč	íovačka) Γ	Vstup má dvojité vy	vážení	
Prodleva vyhodnocení dlouhého stis	ku ja	0,7 🌻 s		
Nastavení analogových vstupů				
AI1 : Typ vstupu Pt100	00 W100 = 1,385	Filtrace vstup	u	0,0 🜲
AI2 : Typ vstupu Pt100	00 W100 = 1,385	Filtrace vstup	u	0,0 🚖
Nastavení binárních výstupů				
DO1 : Nastavení blokace	Zmrazení aktuálního st	avu 💌 🗖 Blo	kovat manuá	ilní režim
DO2 : Nastavení blokace	Zmrazení aktuálního st	avu 🔻 🗖 Blo	kovat manuá	ilní režim
Nastavení PWM výstupu				
AO1 frekvence [Hz]	2000 🚔 ampl	ituda [V] 10,0 🌲		
		~	ж	🗶 Zrušit

Fig. 3.27 Module configuration

The input terminals DI/AIx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. 2.1 Master configuration, check the box Show units, devices

The analog output can be operated in either an analog voltage output, or PWM output mode. The PWM mode is set by HW switch on the front panel of the module (always switch the both independent switches).Switch status is indicated in the status variable of module *STAT.PWM*.

Balanced input

By checking the item, the respective input will be evaluated as a simple balanced binary alarm input. If the item is not checked, the respective input evaluated as a normal binary input (on/off).

Double balanced input

By checking the item, respective input will be evaluated as a double balanced binary alarm input. If the item is not checked and the input is configured for security systems (balanced input), the respective input evaluated as alarm input with a simple balance.

Delay, evaluation of long press

For binary (momentary button) inputs module directly evaluate the short and long presses on each input. By entering values one can set a delay time after which the activation of digital input DI is signalled as the long press (PRESS). Activating the digital input for period shorter than the entered value will be signalled as the short press (CLICK). Delay period (T_{press}) can be inserted in the range 0.1÷2.5s.

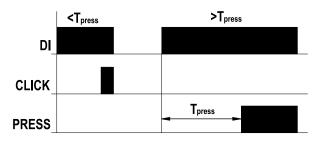


Fig. 3. 28 Evaluation of short / long press

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160k Ω)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

- x the current value of the analog input
- y_t output
- y_{t-1} recent output τ -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Blocking of DO

It can be set for binary outputs if they should stay in their last state or they should be disconnected during transition into HALT mode.

Blocking of manual mode

The ability of manual control of specific binary outputs in the RUN mode is blocked by checking the box. In the HALT mode the manual control of LED outputs is allowed always.

In RUN mode, the manual control is activated by pressing the button *MC (Manual Control)* on module. At the same time the yellow indicator LED MC lights up . Then it is possible to change the status of each output by respective buttons. Another pressing the button *MANUAL CONTROL* LED indicator *MC* goes off and the manual mode is cancelled. Then binary outputs are controlled according to the commands of the CIB line. Activity of manual mode is also indicated in the module status variable *STAT.MAN*.

Setting of PWM output

The analog output will work in PWM mode by setting the switch into position *PWM*. For this output the PWM frequency can be set in range of 100Hz to 2kHz and nominal voltage level in range of 10V to 24V.

The analog output will work in voltage output mode $0\div10V$, if the switch will be set into the position *0-10V*.

3.17.2. The structure of the transmitted data

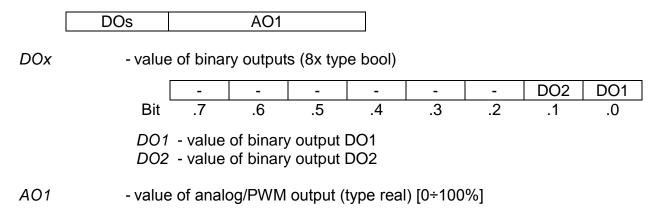
Module contains 6 devices in total:

	device device	•		2*DI/EZ 2*DO	S
	device	•	-	1*STAT	(status AIx)
-	device	4,	input,	1*AI	(input AI1)
-	device	5,	input,	1*AI	(input AI2)
-	device	6,	output,	1*A0	(output AO/PWM)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon II in toolbar.

Struktura dat	Úplný zápis	Alias S	vorka [®] Abs./délka [®]	Hodnota
□ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN			
⊨-DI : TCIB_CIR0203_DI	MI_CIB1_IN~ID1_IN~DI			
-DI1 : BOOL	MI_CIB1_IN~ID1_IN~DI~DI1		%R4.0	0
	MI_CIB1_IN~ID1_IN~DI~DI2		%R4.1	0
-CLICK1 : BOOL	MI_CIB1_IN~ID1_IN~DI~CLICK1		%R4.2	0
-CLICK2 : BOOL	MI_CIB1_IN~ID1_IN~DI~CLICK2		%R4.3	0
-PRESS1 : BOOL	MI_CIB1_IN~ID1_IN~DI~PRESS1		%R4.4	0
-PRESS2 : BOOL	MI_CIB1_IN~ID1_IN~DI~PRESS2		%R4.5	0
-TAMPER1 : BOOL	MI_CIB1_IN~ID1_IN~DI~TAMPER1		%R4.6	0
TAMPER2 : BOOL	MI_CIB1_IN~ID1_IN~DI~TAMPER2		%R4.7	0
STAT : TCIB_CIR0203_STAT	MI_CIB1_IN~ID1_IN~STAT			\$00
-OUF1 : BOOL	MI_CIB1_IN~ID1_IN~STAT~OUF1		%R5.0	0
-VLD1 : BOOL	MI_CIB1_IN~ID1_IN~STAT~VLD1		%R5.1	0
-OUF2 : BOOL	MI_CIB1_IN~ID1_IN~STAT~OUF2		%R5.2	0
-VLD2 : BOOL	MI CIB1 IN~ID1 IN~STAT~VLD2		%R5.3	0
-PWM :BOOL	MI_CIB1_IN~ID1_IN~STAT~PWM		%R5.6	0
MAN : BOOL	MI_CIB1_IN~ID1_IN~STAT~MAN		%R5.7	0
-AI1 : REAL	MI_CIB1_IN~ID1_IN~AI1		%RF6	0
AI2 : REAL	MI_CIB1_IN~ID1_IN~AI2		%RF10	0
DID1_OUT : TMI_CIB1_ID1_OUT	MI_CIB1_OUT~ID1_OUT			
ḋ-DOs : TCIB_DO2	MI_CIB1_OUT~ID1_OUT~DOs			\$00
-D01 : B00L	MI_CIB1_OUT~ID1_OUT~DOs~DO1		%R14.0	0
-DO2 : BOOL	MI_CIB1_OUT~ID1_OUT~DOs~DO2		%B14.1	0
A01 : REAL	MI_CIB1_OUT~ID1_OUT~AO1		%RF15	0

Fig. 3.29 The structure of the transmitted data


Input data

	DI	STAT		Al1			Al2				
DI	- statu	us of binary inp bool)	outs, signal	ling "tarr	nper" sta	tus of al	arm inpu	its (8x t <u>y</u>	уре		
	[Bit	TAMPER2 TAI .7	MPER1 PR .6	ESS2 PI .5	RESS1 (.4	CLICK2 .3	CLICK1 .2	DI2 [.1	DI1 .0		
	 DIx - Current status of binary input DIx / alarm input x CLICKx - short pulse (to log. 1) on binary input (button) x PRESSx - long pulse (into log. 1) on binary input (button) x TAMPERx - tamper status on balanced input x 										
STAT	- statu	is byte of analo	og inputs (8	3x type b	ool)						
		MAN PWI		-	VLD2	OUF2	VLD1	OUF1]		
	Bit	.7 .6	.5	.4	.3	.2	.1	.0			
	 OUF1 - overflow / underflow of range of analog input Al1 VLD1 - Al1 analog input reading validity OUF2 - overflow / underflow of range of analog input Al2 VLD2 - Al2 analog input reading validity PWM - state of HW switch of mode of AO1 = 0 - switch in position 0-10V (analog output) = 1 - switch in position PWM (PWM output) MAN - signalling of manual mode of relay outputs. 										

Al1- value of analog input Al1 (type real) [°C],[kΩ]Al2- value of analog input Al2 (type real) [°C],[kΩ]

Al2- value of analog input Al2 (type real) [°C],[kΩ]
The value of temperature sensor is transferred in °C (with resolution of
 0.1° C), the value of general resistance in range 160kΩ is transferred in kΩ
(with resolution of 10Ω).

Output data

3.18. C-IT-0100H-A

Module temperature sensor in the metal head is designed to temperature measurement in the immersion tube. It contains 2 temperature sensors. The first one is located in the end of the metal stem (main sensor) and is used primary for temperature measurement. The second sensor is placed in the metal head (auxiliary sensor) and is intended for information about the operating temperature of the module head.

After removing the cap of the head CIB connection terminals and signalling RUN LED are accessible. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

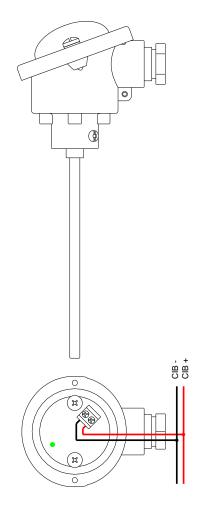


Fig. 3. 30 View and connection example C-IT-0100H-A

Temperature inputsQuantity2Sensor type in the stemPt1000, $W_{100} = 1,385$ Range $-90 \div +320 ^{\circ}C$ Resolution $0.1 ^{\circ}C$ Accuracy $0.5 ^{\circ}C$ Temperature settling time30 min.Sensor type in the headThermistor NTC 12kPower supplyPower supplyPower supply and communication24 V (27 V) from the CIBNominal power calvanic isolation8 mAConsumptionGalvanic isolationDimensions and weightDimensionsDimensions $90 \times 71 \times 200$ mmLength of the stem125 mmWeight220 gOperating and installationConsumptionConsage temperature $-25 \div +70 ^{\circ}C$ Storage temperature $-25 \div +80 ^{\circ}C$ IP degree of protection acc. IEC 529IIOperating position1EN 60664Degree of pollution EN 60664Degree of pollution EN 606641Degree of positionarbitraryInstallationConnecting ConnectingConnectingscrew type terminalsCross-section of wiresmax. 1,0 mm ²	Tab. 3.18 Basic parameters C-IT-0100H-A						
Sensor type in the stemPt1000, $W_{100} = 1,385$ Range $-90 \div +320$ °CResolution 0.1 °CAccuracy 0.5 °CTemperature settling time30 min.Sensor type in the headThermistor NTC 12kPower supplyPower supply and communicationNominal power8 mAconsumption8 mAGalvanic isolationNoDimensions and weight220 gOperating and installation conditionsOperating temperature $-25 \div +70$ °CStorage temperature $-25 \div +80$ °CIP degree of protection acc. IEC 529IIOvervoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationarbitraryInstallationConnectingScrew type terminals	Temperature inputs						
Range $-90 \div +320 \ ^{\circ}C$ Resolution $0.1 \ ^{\circ}C$ Accuracy $0.5 \ ^{\circ}C$ Temperature settling time $30 \ ^{\circ}nin.$ Sensor type in the headThermistor NTC 12kPower supply Power supply and communicationNominal power consumption $8 \ ^{\circ}NA$ Galvanic isolationNoDimensions $90 \times 71 \times 200 \ ^{\circ}NM$ Length of the stem $125 \ ^{\circ}NM$ Weight $220 \ ^{\circ}S$ Operating and installation conditionsOperating temperature $-25 \div +70 \ ^{\circ}C$ Storage temperature $-25 \div +80 \ ^{\circ}C$ IP degree of protection acc. IEC 529IIOvervoltage category EN 606641Degree of pollution EN 606641Degree of pollution EN 606641Degree of pollution EN 606641Connectingscrew type terminals	Quantity	—					
Resolution0.1 °CAccuracy0.5 °CTemperature settling time30 min.Sensor type in the headThermistor NTC 12kPower supplyPower supply and communication24 V (27 V) from the CIBNominal power consumption8 mAGalvanic isolationNoDimensions and weight20 gDimensions90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 606641Degree of pollution EN 606641Degree of pollution EN 606641Degree of pollution EN 606641Connectingscrew type terminals	Sensor type in the stem						
Accuracy0.5 °CTemperature settling time30 min.Sensor type in the headThermistor NTC 12kPower supplyPower supply and communication24 V (27 V) from the CIBNominal power calvanic isolation8 mAConsumption8 mAConsumption90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IIOvervoltage category EN 606641Degree of pollution EN 606641Degree of pollution EN 606641Degree of pollution EN 606641Connectingscrew type terminals	Range						
Temperature settling time30 min.Sensor type in the headThermistor NTC 12kPower supplyThermistor NTC 12kPower supply and communication24 V (27 V) from the CIBNominal power consumption8 mAConsumption8 mAGalvanic isolationNoDimensions and weight90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 606641Degree of pollution EN 606641Degree of pollution EN 606641Connectingscrew type terminals	Resolution						
timeSensor type in the headThermistor NTC 12kPower supply24 V (27 V) from the CIBcommunication8 mAconsumption8 mAconsumption0Galvanic isolationNoDimensions and weight220 gDimensions90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationarbitraryInstallationscrew type terminals	Accuracy	0.5 °C					
Sensor type in the headThermistor NTC 12kPower supply24 V (27 V) from the CIBcommunication8 mAconsumption8 mAconsumption0Galvanic isolationNoDimensions and weight90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 606641Degree of pollution EN 606641Degree of pollution EN 606641Connectingscrew type terminals	Temperature settling	30 min.					
Power supplyPower supply and communication24 V (27 V) from the CIBNominal power consumption8 mAGalvanic isolationNoDimensions and weight0 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationarbitraryInstallationscrew type terminals	time						
Power supply and communication24 V (27 V) from the CIBNominal power consumption8 mAGalvanic isolationNoDimensions and weightDimensionsDimensions90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Degreating positionarbitraryInstallationarbitraryInstallationScrew type terminals	Sensor type in the head	Thermistor NTC 12k					
communication8 mANominal power consumption8 mAGalvanic isolationNoDimensions and weightDimensionsDimensions90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationarbitraryConnectingscrew type terminals	Power supply						
Nominal power consumption8 mAGalvanic isolationNoDimensions and weightNoDimensions90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Degreating positionarbitraryInstallationarbitraryConnectingscrew type terminals	Power supply and	24 V (27 V) from the CIB					
consumptionNoGalvanic isolationNoDimensions and weight90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Degree of pollution EN 606641Connectingscrew type terminals							
Galvanic isolationNoDimensions and weightDimensions90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Degreating positionarbitraryInstallationConnectingscrew type terminals		8 mA					
Dimensions and weightDimensions90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationarbitraryConnectingscrew type terminals							
Dimensions90 × 71 × 200mmLength of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationcrew type terminals		No					
Length of the stem125 mmWeight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationscrew type terminals	Dimensions and weight						
Weight220 gOperating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationscrew type terminals		90 × 71 × 200mm					
Operating and installation conditionsOperating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationscrew type terminals							
Operating temperature-25 ÷ +70 °CStorage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationScrew type terminals	Weight	220 g					
Storage temperature-25 ÷ +80 °CIP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationScrew type terminals	Operating and installation	on conditions					
IP degree of protection acc. IEC 529IP 54Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationConnectingScrew type terminals	Operating temperature	-25 ÷ +70 °C					
acc. IEC 529Overvoltage category EN 60664Degree of pollution EN 60664Operating positionarbitraryInstallationConnectingscrew type terminals	Storage temperature	-25 ÷ +80 °C					
Overvoltage category EN 60664IIDegree of pollution EN 606641Operating positionarbitraryInstallationConnectingScrew type terminals	IP degree of protection	IP 54					
EN 60664 1 Degree of pollution 1 EN 60664 arbitrary Operating position arbitrary Installation screw type terminals	acc. IEC 529						
Degree of pollution 1 EN 60664 arbitrary Operating position arbitrary Installation connecting Screw type terminals	Overvoltage category	11					
EN 60664 Operating position Installation Connecting screw type terminals	EN 60664						
Operating positionarbitraryInstallationscrew type terminals	Degree of pollution	1					
Installation Connecting screw type terminals	EN 60664						
Connecting screw type terminals		arbitrary					
	Installation						
Cross-section of wires max. 1,0 mm ²	Connecting	screw type terminals					
	Cross-section of wires	max. 1,0 mm ²					

Tab. 3.18 Basic parameters C-IT-0100H-A

3.18.1. Configuration

C-IT-0100H-A			×
_Offset teploty (korekce +-)−			
mTHERM : Hlavní teplota	0,0	€ ∘⊂	
hTHERM : Teplota hlavice	0,0		
С]	🗶 Zrušit	

Fig. 3.31 Module configuration

Temperature offset

Correction offset of thermometer, which will be added on the measured temperature.

3.18.2. The structure of the transmitted data

Module contains 3 devices in total:

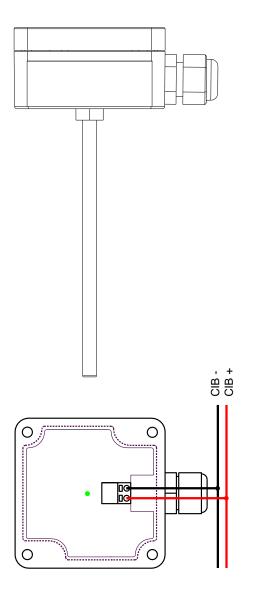
-	device	1,	input,	1*STAT	(status)			
-	device	2,	input,	1*AI	(thermometer	in	the	stem)
-	device	З,	input,	1*AI	(thermometer	in	the	head)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

😽 Nastavení V/V - Konfiguraci nelze měnit					
IEC 💑 💑 dec exp hex bin st	в 🔢 🛅			5:4	S102 = \$0
O RMO					
0 CP-1004 2 MI2-01M 3 IR-1057					
Struktura dat	Úplný zápis	[∉] Alias [∉]	Svorka	Abs./délka	Hodnota
王 Statistic_MI_CIB1 : TCHStatistic 🔒	, r0_p2_Statistic_MI_CIB1			%X0/10	
Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1			%Y0/2	\$0000
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
E-STAT : TCIB_CIT0100_STAT	MI_CIB1_IN~ID1_IN~STAT				\$00
-mOUF : BOOL -	MI_CIB1_IN~ID1_IN~STAT~mOUF			%R204.0	0
-mVLD : BOOL -	MI_CIB1_IN~ID1_IN~STAT~mVLD			%R204.1	0
-hOUF : BOOL -	MI_CIB1_IN~ID1_IN~STAT~hOUF			%R204.2	0
-hVLD : BOOL -	MI_CIB1_IN~ID1_IN~STAT~HVLD			%R204.3	0
mTHERM : REAL	MI_CIB1_IN~ID1_IN~mTHERM			%RF205	0
-hTHERM : REAL -	MI_CIB1_IN~ID1_IN~hTHERM			%RF209	0

The structure of the transmitted data

Input data


Г

	STAT		mTF	IERM			hTHE	ERM		
STAT	- status	s byte (8	3x type b	ool)						
	Γ	-	-	-	-	hVLD	hOUF	mVLD	mOUF	
	Bit	.7	.6	.5	.4	.3	.2	.1	.0	•
	 mOUF - overflow/underflow of the range of primary temperature sensor mVLD - validity of the reading of primary temperature sensor hOUF - overflow/underflow of the range of auxiliary temperature sensor hVLD - validity of the reading of auxiliary temperature sensor 									
mTHE	RM - tempe	erature	of primar	y sensoi	r in the s	tem (typ	e real) [°C]		
hTHEF	RM - tempe	erature	of primar	y sensoi	r, in the h	nead (typ	oe real) [°C]		

3.19. C-IT-0100H-P

Module temperature sensor in the plastic head (with higher ingress protection - IP) is designed to temperature measurement in the immersion tube. It contains 2 temperature sensors. The first one is located in the end of the metal stem (primary sensor) and is used primary for temperature measurement. The second sensor is placed in the plastic head (auxiliary sensor) and is intended for information about the operating temperature of the module head.

After removing the cap of the head CIB connection terminals and signalling RUN LED are accessible. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

Tab. 3.19 Basic parameters C-IT-0100H-P

Temperature inputs	
	2
Quantity	2
Sensor type in the stem	Pt1000, $W_{100} = 1,385$
Range	–90 ÷ +320 °C
Resolution	0.1°C
Accuracy	0.5 °C
Temperature settling time	30 min.
Sensor type in the head	Thermistor NTC 12k
Power supply	
Power supply and	24 V (27 V) from the CIB
communication	
Nominal power	8 mA
consumption	
Galvanic isolation	No
Dimensions and weight	
Dimensions	90 × 66 × 155mm
Length of the stem	115 mm
Weight	130 g
Operating and installation	on conditions
Operating temperature	-25 ÷ +70 °C
Storage temperature	-25 ÷ +80 °C
IP degree of protection acc. IEC 529	IP 65
Overvoltage category EN 60664	11
Degree of pollution EN 60664	1
Operating position	arbitrary
Installation	
Connecting	Push-in terminals,
Cross-section of wires	max. 1,0 mm ²
	· · · · ·

Fig. 3. 33 View and connection example C-IT-0100H-P

3.19.1. Configuration

C-IT-0100H-P			X
_Offset teploty (korekce +-)=			
mTHERM : Hlavní teplota	0,0	€ ∘⊂	
hTHERM : Teplota hlavice	0,0	€ ∘⊂	
C OK		🗶 Zrušit	

Fig. 3.34 Module configuration

Temperature offset

Correction offset of thermometer, which will be added on the measured temperature.


3.19.2. The structure of the transmitted data

Module contains 3 devices in total:

-	device	1,	input,	1*STAT	(status)			
-	device	2,	input,	1*AI	(thermometer	in	the	stem)
-	device	З,	input,	1*AI	(thermometer	in	the	head)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

🏘 Nastavení V/V - Konfiguraci nelze měnit					
IEC 💑 💑 💑 DEC EXP HEX BIN ST	R 🔢 🛅			5:4	S102 = \$0
○ RM0					
0 CP-1004 2 MI2-01M 3 IR-1057					
Struktura dat	Úplný zápis	Alias A	Svorka	Abs./délka	Hodnota
王 Statistic_MI_CIB1 : TCHStatistic 🗛	r0_p2_Statistic_MI_CIB1			%X0/10	
Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1			%Y0/2	\$0000
□ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
-STAT : TCIB_CIT0100_STAT	MI_CIB1_IN~ID1_IN~STAT				\$00
— mOUF : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~mOUF			%R204.0	0
-mVLD : BOOL -	MI_CIB1_IN~ID1_IN~STAT~mVLD			%R204.1	0
—houf : Bool 🗛	MI_CIB1_IN~ID1_IN~STAT~hOUF			%R204.2	0
-hVLD : BOOL	MI_CIB1_IN~ID1_IN~STAT~hVLD			%R204.3	0
mTHERM : REAL 🗛	MI_CIB1_IN~ID1_IN~mTHERM			%RF205	0
-hTHERM : REAL	MI_CIB1_IN~ID1_IN~hTHERM			%RF209	0

Input data

	STAT		mTF	IERM			hTHE	RM	
STAT	- status	- status byte (8x type bool)							
	Γ	-	-	-	-	hVLD	hOUF	mVLD	mOUF
	Bit	.7	.6	.5	.4	.3	.2	.1	.0
	mVLD hOUF	 mOUF - overflow/underflow of the range of primary temperature sensor mVLD - validity of the reading of primary temperature sensor hOUF - overflow/underflow of the range of auxiliary temperature senso hVLD - validity of the reading of auxiliary temperature sensor 							or
mTHE	<i>nTHERM</i> - temperature of primary sensor in the stem (type real) [°C]								
hTHEF	hTHERM - temperature of primary sensor, in the head (type real) [°C]								

.

3.20. C-IT-02001

Module contains 2 analog inputs and one internal temperature sensor. Each analog input can be configured independently for temperature sensors, thermocouples, resistors, voltage or current.

Module is designed into the plastic box with the higher ingress protection IP65.

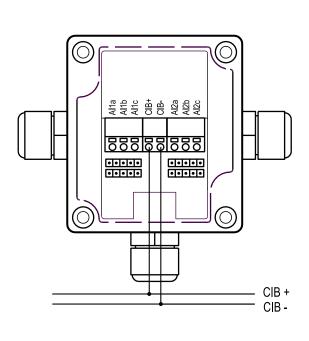


Fig. 3.36 View C-IT-02001

Power supply					
Power supply and	24 V (27 V) from the				
communication	CIB				
Max. power	15mA,				
consumption	60mA (at powering				
	the current loops)				
Galvanic isolation	No				
Dimensions and weight					
Dimensions	125 × 100 × 38mm				
Weight	120 g				
Operating and installation conditions					
Operating temperature	-10 ÷ +55 °C				
Storage temperature	-25 ÷ +70 °C				
IP degree of protection	IP65				
acc. IEC 529					
Operating position	arbitrary				
Installation					
Туре	wall mounting				
Connecting	Push-in terminals,				
Cross-section of wires	0,14 ÷ 1,5 mm ²				

Analog inputs	
Quantity	2
Type of convertor	Sigma-delta, 16 bits
Range of measurement	Pt1000 (-90/+320°C),
	Ni1000 (-60/+200°C), NTC12k/25°C(-40/+125°C), KTY81-121 (-55/+125°C), OV200k (0 ÷ 200kΩ),
- Voltage	0÷10V, 0÷5V, ±2V, ±1V, High Impedance ±1V, High Impedance ±100mV,
- Current	0÷20mA, 4÷20mA,
- Thermocouples	type J (-210/+1200°C), type K (-200/+1372°C), type R (-50/+1768°C), type S (-50/+1768°C), type T (+200/+400°C), type B (+250/+1820°C), type N (-200/+1300°C)
Input	
impedance	4.7kΩ
- RTD, NTC, OV	54.6 kΩ
 Voltage ranges 	4MΩ
 Thermocouples, High impedance voltage ranges Current ranges 	50Ω
Measurement error	< 2%
	< 5% (for OV200k) ¹⁾
Thermocouple cold	Yes (excluding type B)
junction compensation	(),), (), (), (), (), (), (), (
Additive error due	<3% of range of internal
compensation cold	thermometer
junction	
Internal thermometer	
Туре	NTC12k / 25°C
Range	-20 ÷ +80°C
Measurement error	< 4%

¹⁾ The measurement error rises for resistors higher Type of analog input has to be selected than 50kΩ. in

configuration programming environment and by setting of configuration jumpers on the module see following figures.

Tab. 3.20 Basic parameters C-IT-02001

the

in

module

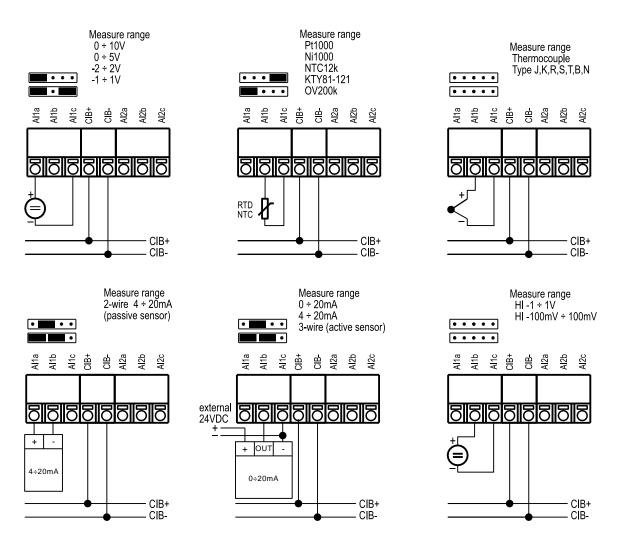


Fig. 3. 37 Connecting the sensors and setting of configuration jumpers

3.20.1. Configuration

C-IT-0200I			X
Nastavení analogových vstupi)		
AI1 : Hlavní teplota	Pt1000 W100 = 1,385	Filtrace vstupu	0,0 🚔
AI2 : Hlavní teplota	Pt1000 W100 = 1,385	Filtrace vstupu	0,0 🚖
Offset teploty (korekce +-) hTHERM : Teplota hlavice	0,0 € ∝		
		🗸 ок	X Zrušit

Fig. 3.38 Module configuration

Temperature offset

Correction offset of thermometer, which will be added on the measured temperature of internal thermometer. Internal thermometer is used for cold junction compensation of the thermocouples measurement. Offset affects the thermocouples measurement.

Setting analog inputs

Choosing the type of analog input: Pt1000, W₁₀₀ = 1,385, -90/+320°C Pt1000, W₁₀₀ = 1,391, -90/+320°C Ni1000, W₁₀₀ = 1,617, -60/+200°C Ni1000, W₁₀₀ = 1,500, -60/+200°C NTC 12k (negative thermistor, 12kΩ at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV200k (0 ÷ 200kΩ) 0 ÷ 10V 0 ÷ 5V ±2V ±1V HI ±1V (Voltage range ±1V, High impedance inputs) HI ±100mV (Voltage range ±100mV, High impedance inputs) 0 ÷ 20mA 4 ÷ 20mA

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

х	 the current value of the analog input
Уt	- output
y _{t-1}	- recent output
ζ	-time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

3.20.2. The structure of the transmitted data

Module contains 4 devices total, each of them can be activated/deactivated:

- device 1, input,	1*STAT	(status of analog inputs)
- device 2, input,	1*AI	(input AI1)
- device 3, input,	1*AI	(input AI2)
- device 4, input,	1*AI	(internal thermometer)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis	Alias ⁴	Svorka ⁴	Abs./délka4	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
⊟-STAT : TCIB_CIT0200I_STAT	MI_CIB1_IN~ID1_IN~STAT				\$00
🛛 🗌 🗕 OUF1 : BOOL 🛛 🗛	MI_CIB1_IN~ID1_IN~STAT~OUF1			%R4.0	0
-VLD1 : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~VLD1			%R4.1	0
—OUF2 : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~OUF2			%R4.2	0
-VLD2 : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~VLD2			%R4.3	0
-hOUF : BOOL 🍒	MI_CIB1_IN~ID1_IN~STAT~eOUF			%R4.4	0
-hVLD : BOOL -	MI_CIB1_IN~ID1_IN~STAT~eVLD			%R4.5	0
-Al1 : REAL	MI_CIB1_IN~ID1_IN~AI1			%RF5	0
-AI2 : REAL	MI_CIB1_IN~ID1_IN~AI2			%RF9	0
htherm : Real 🍒	MI_CIB1_IN~ID1_IN~hTHERM			%RF13	0

The structure of the transmitted data Fig. 3.39

Input data

STAT AI1 AI2 hTHERM

STAT

- status byte (8x type bool)

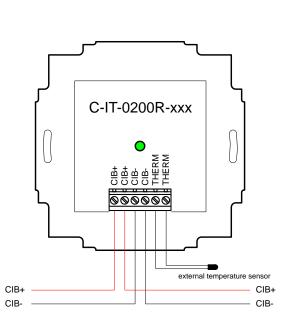
	-	-	hVLD	hOUF	VLD2	OUF2	VLD1	OUF1
Bit	.7	.6	.5	.4	.3	.2	.1	.0

- OUF1 overflow / underflow of range of analog input Al1
- VLD1 Al1 analog input reading validity
- OUF2 overflow / underflow of range of analog input AI2
- VLD2 Al2 analog input reading validity
- hOUF overflow/underflow of the range of internal auxiliary temperature sensor
- hVLD validity of the reading of internal auxiliary temperature sensor

AI1 - value of analog input AI1 (type real) [°C], [kΩ], [mV], [mA] - value of analog input AI2 (type real) [°C], [kΩ], [mV], [mA]

Al2

The value of temperature sensors is converted and transferred in °C, for general resistor range of $200k\Omega$ the value is converted and transferred in $k\Omega$ (with resolution of 10 Ω). For voltage ranges the value is transferred in mV and for current ranges it is transferred in mA.


hTHERM - temperature of auxiliary internal sensor (type real) [°C]

3.21. C-IT-0200R

Module of temperature sensor is designed for measuring the temperature in the interior. It contains 2 temperature sensors. One sensor in the module is permanently connected and represents internal thermometer. The input for second sensor is led out on the terminal and the stand alone external temperature sensor can be connected..

After removing the plastic cover the RUN LED indicator and the terminals are accessible (for connection to the CIB bus and for an external temperature sensor).Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

Module is designed for Time and Element designs of ABB production. For actual offer of designs see the catalogue of Teco

Fig. 3. 40 View and connection example C-IT-0200R

Tab. 3.21 Basic param	
Temperature inputs	
Quantity	2
Sensor type	Thermistor NTC 12k
External sensor type	Thermistor NTC 12k
Range	–20 ÷ +80 °C
Resolution	0.1 °C
Accuracy	0.6 °C
Temperature settling	60 min.
time	
Power supply	
Power supply and	24 V (27 V) from the CIB
communication	
Nominal power	15 mA
consumption	
Galvanic isolation	No
Dimensions and weight	
Dimensions ¹⁾	89 × 87 × 18mm
Weight	80 g
Operating and installation	on conditions
Operating temperature	0 ÷ +55 °C
Storage temperature	-25 ÷ +70 °C
IP degree of protection	IP 10B
acc. IEC 529	
Overvoltage category	11
EN 60664	
Degree of pollution	1
EN 60664	
Operating position	vertical
Installation	into the flush box
Connecting	screw type terminals
Cross-section of wires	max. $1,0 \text{ mm}^2$

Tab. 3.21 Basic parameters C-IT-0200R

65) Dimensions according the specifics of used design. The height 18 mm is only the height above the level of the plastic flush installation box. Height of the bottom part located in the flush installation box is 13 mm.

3.21.1. Configuration

C-IT-0200R	×
Offset teploty (korekce +-) iTHERM : Internal thermo senzo 0,0	
OK X Zrušit	

Fig. 3.41 Module configuration

Temperature offset

Correction offset of thermometer, which will be added on the measured temperature.

3.21.2. The structure of the transmitted data

Module contains 3 devices in total:

-	device	1,	input,	1*STAT	(status)	
-	device	2,	input,	1*AI	(internal	thermometer)
-	device	3,	input,	1*AI	(external	thermometer)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

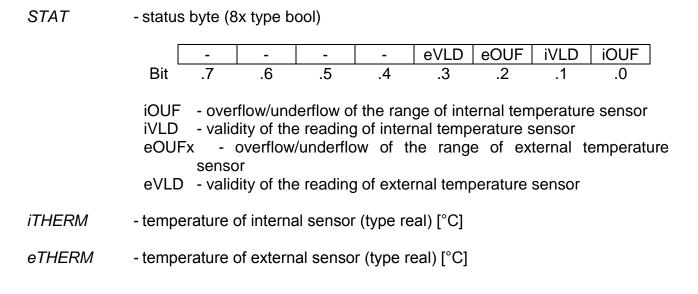

🍣 Nastavení V/V - Konfiguraci nelze měnit								
IEC 💑 💑 DEC EXP HEX BIN STR 🔢 🛅 5:4 S102=\$00								
○ RM0								
0 CP-1004 2 MI2-01M 3 IR-1057								
Struktura dat	Úplný zápis	Alias	Svorka	Abs./délka	Hodnota			
🖅 Statistic_MI_CIB1 : TCHStatistic 🗛	r0_p2_Statistic_MI_CIB1			%X0/10				
Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1			%Y0/2	\$0000			
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN							
E-STAT : TCIB_CIT0200_STAT	MI_CIB1_IN~ID1_IN~STAT				\$00			
-iOUF : BOOL	MI_CIB1_IN~ID1_IN~STAT~iOUF			%R204.0	0			
	MI_CIB1_IN~ID1_IN~STAT~WLD			%R204.1	0			
eOUF : BOOL 🍒	MI_CIB1_IN~ID1_IN~STAT~eOUF			%R204.2	0			
-eVLD : BOOL -	MI_CIB1_IN~ID1_IN~STAT~eVLD			%R204.3	0			
itherm : real	MI_CIB1_IN~ID1_IN~iTHERM			%RF205	0			
etherm : real	MI_CIB1_IN~ID1_IN~eTHERM			%RF209	0			

Fig. 3.42

The structure of the transmitted data

Input data

STAT iTHERM eTHERM

3.22. C-IT-0200S

Module contains 2 universal inputs. Each of the universal inputs can be used either as the binary input for potential free contacts or as a balanced input for alarm detectors (security systems) or as the analog input for connecting a resistance or temperature sensor.

The mechanical design of the module is designed to be mounted under cover of device (ingress protection of the module IP10B). Signals of the module are available on ribbon cable.

signalling green RUN LED is accessible from the side of module opposite to ribbon cable. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

For sensors Pt1000, Ni1000, KTY81-121, and sensor TC and TZ (thermistor NTC12k) module performs the conversion and linearization of measured values directly to temperature. For other types of resistors (in range 0 to 160 k Ω) the conversion to the temperature has to be done in user program in CPU (module gives the value in k Ω , with resolution 10 Ω).

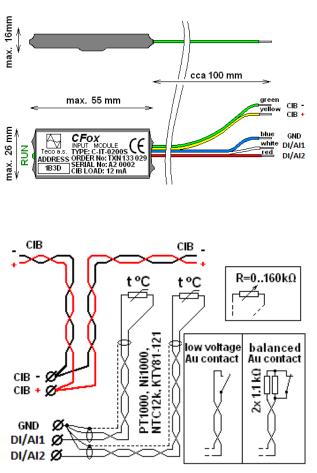


Fig. 3. 43 View and connection C-IT-0200S

Tab. 3.22 Basic paran	neters C-IT-0200S			
Universal inputs				
Quantity	2			
Optional types of inputs	Binary, balanced, Pt1000, Ni1000, NTC12kΩ, KTY81- 121, resistance 160kΩ			
Binary input	NO contact (0/1) (Normally Open)			
Balanced input for	Resistance 1x2k2, or 2x1k1			
security detectors				
Pt1000	–90 ÷ +320 °C			
Ni1000	–60 ÷ +200 °C			
NTC 12kΩ	–40 ÷ +125 °C			
KTY81-121	–55 ÷ +125 °C			
Resistance input	0 ÷ 160kΩ			
Resolution	0.1 °C / 10Ω			
Accuracy	0,5 %			
Period of refresh AI	typically 5s			
Power supply				
Power supply and communication	24 V (27 V) from the CIB			
Nominal power	10 mA			
consumption	TOTIA			
	12 mA			
Max. power	12 IIIA			
consumption	No			
Galvanic isolation	-			
Dimensions and weight				
Dimensions	max. 55 × 26 × 16mm			
Weight	3 g			
Operating and installati				
Operating temperature	0 ÷ +55 °C			
Storage temperature	-25 ÷ +70 °C			
IP degree of protection acc. IEC 529	IP10B			
Overvoltage category	II (according to EN 60664)			
Degree of pollution	1 (according to EN 60664)			
Operating position	Arbitrary			
Installation				
Туре	under cover of device			
Connecting	Ribbon cable 0.15 mm ²			
Connecting				



Fig. 3. 44 Simply balanced input for security detectors Fig. 3. 45 Double-balanced input for security detectors

3.22.1. Configuration

C-IT-02005				×
Nastavení binárních vstupů-				
🔲 DI1 : Vyvážený vstup	(zabezpečovačka)	🔲 Vstup	o má dvojité vyvážení	
📃 DI2 : Vyvážený vstup	(zabezpečovačka)	🔲 Vstup	o má dvojité vyvážení	
Nastavení analogových vstu	pů			
AI1 : Typ vstupu	Pt1000 W100 = 1,385	•	Filtrace vstupu	0,0 👤
AI2 : Typ vstupu	Pt1000 W100 = 1,385	-	Filtrace vstupu	0,0 🌻
			🗸 ок	🗶 Zrušit

Fig. 3.46 Module configuration

The input terminals DI/Alx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. *2.1 Master configuration*, check the box *Show units, devices*

Balanced input

By checking the item, the respective input will be evaluated as a simple balanced binary alarm input. If the item is not checked, the respective input evaluated as a normal binary input (on/off).

Double balanced input

By checking the item, respective input will be evaluated as a double balanced binary alarm input. If the item is not checked and the input is configured for security systems (balanced input), the respective input evaluated as alarm input with a simple balance.

Type of input

Choosing the type of analog input: Pt1000, $W_{100} = 1,385, -90/+320^{\circ}C$ Pt1000, $W_{100} = 1,391, -90/+320^{\circ}C$ Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160k Ω)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

- x the current value of the analog input
- y_t output
- y_{t-1} recent output
- -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

3.22.2. The structure of the transmitted data

Module contains 4 devices in total:

-	device 1	, input,	2*DI/EZ	S
-	device 2	, input,	1*STAT	(status AIx)
-	device 3	, input,	1*AI	(input AI1)
-	device 4	, input,	1*AI	(input AI2)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon $\overline{10}$ in toolbar.

🛠 Nastavení V/V - Konfiguraci nelze měnit									
IEC 💑 💑 DEC EXP HEX BIN STR 🚼 🛅 6:3 S102=									
O RMO									
0 CP-1004 2 MI2-01M 3 IR-1057									
Struktura dat	Úplný zápis	Alias 4 Svor	ka ^{ll} Abs./délka ^{ll}	Hodnota					
🕀 Statistic_MI_CIB1 : TCHStatistic 🗛	r0_p2_Statistic_MI_CIB1		XX0/10						
Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1		%Y0/2	\$0000					
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN								
⊨ DI : TCIB_DI2T	MI_CIB1_IN~ID1_IN~DI			\$00					
🚽 🗆 – DI1 : BOOL 🗛	MI_CIB1_IN~ID1_IN~DI~DI1		%R204.0	0					
—D12 : BOOL 🗛	MI_CIB1_IN~ID1_IN~DI~DI2		%R204.1	0					
—TAMPER1 : BOOL 🗛	MI_CIB1_IN~ID1_IN~DI~TAMPER1		%R204.4	0					
TAMPER2 : BOOL 🗛	MI_CIB1_IN~ID1_IN~DI~TAMPER2		%R204.5	0					
STAT : TCIB_AI2_STAT	MI_CIB1_IN~ID1_IN~STAT			\$00					
OUF1 : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~OUF1		%R205.0	0					
-VLD1 : BOOL 🗛	MI_CIB1_IN~ID1_IN~STAT~VLD1		%R205.1	0					
-OUF2 : BOOL	MI_CIB1_IN~ID1_IN~STAT~OUF2		%R205.2	0					
VLD2 : BOOL 📮	MI_CIB1_IN~ID1_IN~STAT~VLD2		%R205.3	0					
All : REAL 🗛	MI_CIB1_IN~ID1_IN~AI1		%RF206	0					
📕 🛶 AI2 : REAL 🛛 🗛	MI_CIB1_IN~ID1_IN~AI2		%RF210	0					
Fig. 3.47	The structure of the tra	ansmitted	l data						

Input data

DI

DI	STAT	AI1	Al2

- status of binary inputs, signalling "tamper" status of alarm inputs (8x type bool)

		-	-	TAMPER	2 TAMPE	ER1	-	-	DI2	DI1
	Bit	.7	.6	.5	.4		3	.2	.1	.0
	DI1	input1		ne current	status o	f the bir	nary DI	1/bala	anced fo	or alarm
	DI2	input 2		ne current	status o	f the bir	nary DI	2/bala	anced fo	or alarm
		1PER1 1PER2		nper status						
STAT				inputs (8						
	Bit	- .7	- .6	5	4	VLD2 .3	OUF2 .2	VL		UF1 .0
	VLD1 OUF2	- Al1 a - over	analog flow / u	nderflow o input read nderflow o input read	ling validi of range o	ity of analo	•			
AI1 AI2	- value The v 0.1°C)	of analo alue of	og input tempe alue of g	t AI1 (type t AI2 (type rature ser general re)Ω).	e real) [°C nsor is tr	C],[kΩ] ansferre				

3.23. C-IT-0504S

Module contains 5 universal inputs and 4 analog outputs (0-10V). Each of the universal inputs can be used either as the binary input for potential free contacts or as a balanced input for alarm detectors (security systems) or as the analog input for connecting a resistance or temperature sensor. Inputs can be configured into two groups, 4+1.

The mechanical design of the module is designed to be mounted under cover of device (ingress protection of the module IP10B). Signals of the module are available on ribbon cable.

The green LED indicating the RUN mode is available from the side of the module next to the connector. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

For sensors Pt1000, Ni1000, KTY81-121, and sensor TC and TZ (thermistor NTC12k) module performs the conversion and linearization of measured values directly to temperature. For other types of resistors (in range 0 to 160 k Ω) the conversion to the temperature has to be done in user program in CPU (module gives the value in k Ω , with resolution 10 Ω).

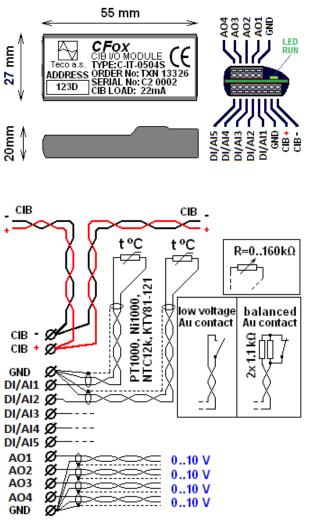


Fig. 3. 48 View and connection C-IT-0504S

Optional types of inputs Binary input Balanced input for security detectors	5 Binary, balanced, Pt1000, Ni1000, NTC12kΩ, KTY81- 121, resistance 160kΩ NO contact (0/1) (Normally Open) Resistance 1x2k2, or 2x1k1 -90 ÷ +320 °C					
Optional types of inputs Binary input Balanced input for security detectors	Binary, balanced, Pt1000, Ni1000, NTC12kΩ, KTY81- 121, resistance 160kΩ NO contact (0/1) (Normally Open) Resistance 1x2k2, or 2x1k1					
Binary input Balanced input for security detectors	Ni1000, NTC12kΩ, KTY81- 121, resistance 160kΩ NO contact (0/1) (Normally Open) Resistance 1x2k2, or 2x1k1					
Binary input 1 Balanced input for F security detectors	121, resistance 160kΩ NO contact (0/1) (Normally Open) Resistance 1x2k2, or 2x1k1					
Binary input 1 Balanced input for F security detectors	NO contact (0/1) (Normally Open) Resistance 1x2k2, or 2x1k1					
Balanced input for F security detectors	Open) Resistance 1x2k2, or 2x1k1					
Balanced input for F security detectors	Resistance 1x2k2, or 2x1k1					
Balanced input for F security detectors	Resistance 1x2k2, or 2x1k1					
security detectors	–90 ÷ +320 °C					
	–90 ÷ +320 °C					
Pt1000 -						
	–60 ÷ +200 °C					
	–40 ÷ +125 °C					
	–55 ÷ +125 °C					
	0 ÷ 160kΩ					
	0.1 °C / 10Ω					
	0,5 %					
	typically 5s					
Analog outputs						
-	4					
	•					
	Voltage, 0 ÷ 10V					
	>1 kΩ					
	0 ÷ 125% U _{im}					
	1%					
Power supply	04)//07)/)///					
Power supply and 2 communication 2	24 V (27 V) from the CIB					
Nominal power 2	22 mA					
consumption						
	80 mA					
consumption						
	No					
Dimensions and weight						
	max. 55 × 26 × 20mm					
	7 g					
Operating and installation						
	0 ÷ +70 °C					
· · ·	-25 ÷ +85 °C					
	IP10B					
acc. IEC 529						
5 5 7	II (according to EN 60664)					
	1 (according to EN 60664)					
Operating position A	Arbitrary					
Type of operation (Continuous					
Installation						
	under cover of device					
Connection terminals	Spring-loaded, $0.15 \div 0.5$ mm ²					

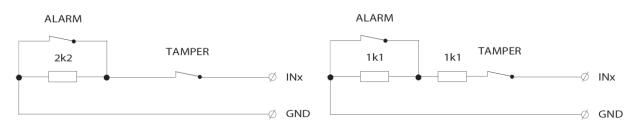


Fig. 3. 49 Simply balanced input for security detectors Fig. 3. 50 Double-balanced input for security detectors

3.23.1. Configuration

C-IT-05045							
Nastavení binárních vstupů							
🔲 DII : Vyvážený vstup (zabezpečovačka)	🔽 Vstup má dvojité vyvážení						
🔲 DI2 : Vyvážený vstup (zabezpečovačka)	🔽 Vstup má dvojité vyvážení						
🔲 DI3 : Vyvážený vstup (zabezpečovačka)	🗖 Vstup má dvojité vyvážení						
🔽 DI4 : Vyvážený vstup (zabezpečovačka)	🔲 Vstup má dvojité vyvážení						
DI5 : Vyvážený vstup (zabezpečovačka)	Vstup má dvojité vyvážení						
Nastavení analogových vstupů AI1-AI4 : Typ vstupu Pt1000 W100 = 1,385 AI5 : Typ vstupu Ni1000 W100 = 1,617							
Nastavení analogových výstupů							
Nastavení blokace AO1-AO4 Zmrazení aktuálního stavu							
	🗸 OK 🛛 🗶 Zrušit						

Fig. 3.51 Module configuration

The input terminals DI/Alx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. In terms of configuration, the analog inputs are divided into two groups, 4 +1. In the first group there are the inputs Al1-Al4, the second group there is stand alone input Al5. Depending on the configured type of input (as enabled device) the specific items are accessible / inaccessible in configuration dialog. Enabling devices see. chap.<u>2.1</u> *Master configuration*, check the box *Show units, devices*.

Balanced input

By checking the item, the respective input will be evaluated as a simple balanced binary alarm input. If the item is not checked, the respective input evaluated as a normal binary input (on/off).

Double balanced input

By checking the item, respective input will be evaluated as a double balanced binary alarm input. If the item is not checked and the input is configured for security systems (balanced input), the respective input evaluated as alarm input with a simple balance.

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12kΩ at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160kΩ)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

х	- the current value of the analog input
Уt	- output
Уt-1	- recent output
ζ	-time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Blocking of AO

It can be set for analog output AO1 if they should stay in their last state or they should be disconnected during transition into HALT mode.

3.23.2. The structure of the transmitted data

Module contains 5 devices in total:

-	device	1,	input,	5*DI/EZS	
-	device	2,	output,	4*A0	
-	device	З,	input,	1*STAT (statu	us AIx)
-	device	4,	input,	4*AI (input)	AI1, AI2, AI3, AI4)
-	device	5,	input,	1*AI (input	t AI5)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

CIB UNITS, MODULES

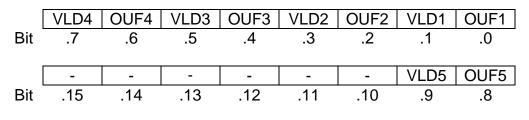
Struktura dat	Úplný zápis	Alias	Svorka	Abs./délka
∃ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN			
DI : TCIB_DI5T	MI_CIB1_IN~ID1_IN~DI			
-DI1 : BOOL	MI_CIB1_IN~ID1_IN~DI~DI1			%R204.0
-D12 : BOOL	MI_CIB1_IN~ID1_IN~DI~DI2			%R204.1
	MI_CIB1_IN~ID1_IN~DI~DI3			%R204.2
D14 : BOOL	MI_CIB1_IN~ID1_IN~DI~DI4			%R204.3
D15 : BOOL	MI_CIB1_IN~ID1_IN~DI~DI5			%R204.4
-TAMPER1 : BOOL	MI_CIB1_IN~ID1_IN~DI~TAMPER1			%R205.0
-TAMPER2 : BOOL	MI_CIB1_IN~ID1_IN~DI~TAMPER2			%R205.1
-TAMPER3 : BOOL	MI_CIB1_IN~ID1_IN~DI~TAMPER3			%R205.2
-TAMPER4 : BOOL	MI_CIB1_IN~ID1_IN~DI~TAMPER4			%R205.3
TAMPER5 : BOOL	MI_CIB1_IN~ID1_IN~DI~TAMPER5			%R205.4
STAT : TCIB_AI5_STAT	MI_CIB1_IN~ID1_IN~STAT			%R20671
🗄 🗚 : TCIB_AI4	MI_CIB1_IN~ID1_IN~AI			
AI1 : REAL	MI_CIB1_IN~ID1_IN~AI~AI1			%RF208
-AI2 : REAL	MI_CIB1_IN~ID1_IN~AI~AI2			%RF212
-AI3 : REAL	MI_CIB1_IN~ID1_IN~AI~AI3			%RF216
AI4 : REAL	MI_CIB1_IN~ID1_IN~AI~AI4			%RF220
AI5 : REAL	MI_CIB1_IN~ID1_IN~AI5			%RF224
DID1_OUT : TMI_CIB1_ID1_OUT	MI_CIB1_OUT~ID1_OUT			
由 AO : TCIB_AO4	MI_CIB1_OUT~ID1_OUT~AO			
A01 : REAL	MI_CIB1_OUT~ID1_OUT~AO~AO1			%RF228
	MI_CIB1_OUT~ID1_OUT~AO~AO2			%RF232
A03 : REAL	MI_CIB1_OUT~ID1_OUT~AO~AO3			%RF236
A04 : REAL	MI_CIB1_OUT~ID1_OUT~AO~AO4			%RF240

Fig. 3.52

The structure of the transmitted data

Input data

DI STAT	Alx


DI

- status of binary inputs, signalling "tamper" status of alarm inputs (16x type bool)

	-	-	-	DI5	DI4	DI3	DI2	DI1
Bit	.7	.6	.5	.4	.3	.2	.1	.0
	-	-	-	TAMPER5	TAMPER4	TAMPER3	TAMPER2	TAMPER1
Bit	.15	.14	.13	.12	.11	.10	.9	.8

DIx - Current status of binary input DIx / alarm input x TAMPERx - tamper status on balanced input x

STAT - status byte of analog inputs (16x type bool)

OUFx - overflow / underflow of range of analog input Alx VLDx - validity of reading of analog input Alx

Alx - value of analog input Alx (5x type real) [°C],[kΩ]

The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range $160k\Omega$ is transferred in $k\Omega$ (with resolution of 10Ω).

Output data

AOx

- value of analog output (4x type real) [0-100%]

3.23.3. Module specifics

For the proper operation of this module in the CIB network the firmware version in the parent module CIB master MI2-01M / MI2-02M is required to be at least v1.6 or higher!!!

3.24. C-IT-0908S

Module contains 6 binary inputs, 2 universal inputs, 1 analog input and 8 binary outputs. The module is designed primarily for CIB coupling of wall switches with the dry contacts and LED indicators (e.g. switches from Jung, Gira, ...).

Each of the universal inputs can be used either as the binary input for potential free contacts or as a balanced input for alarm detectors (security systems) or as the analog input for connecting a resistance or temperature sensor. Analog input is designed for connecting of resistive temperature sensors. Binary inputs are designed only for connecting the LED indicators (with common cathode).

The mechanical design of the module is designed to be mounted under cover of device (ingress protection of the module IP10B). Signals of module are led out by removable connectors with separated wires.

The green LED indicating the RUN mode is available from the side of the module opposite to the connectors. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

For sensors Pt1000, Ni1000, KTY81-121, and sensor TC and TZ (thermistor NTC12k) module performs the conversion and linearization of measured values directly to temperature. For other types of resistors (in range 0 to 160 k Ω) the conversion to the temperature has to be done in user program in CPU (module gives the value in k Ω , with resolution 10 Ω).

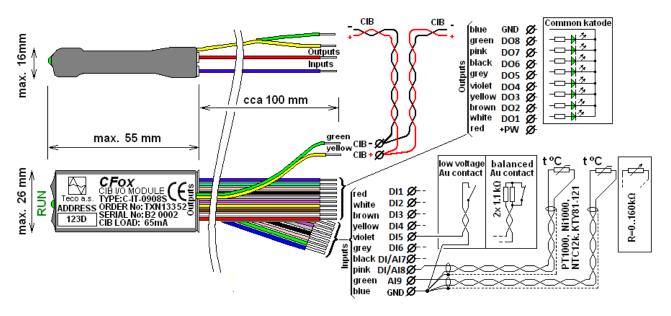


Fig. 3. 53 View and connection C-IT-0908S

Tab. 3.24 Basic parameters C-IT-0908S

Binary inputs	
Quantity	6
Optional types of inputs	Normally open contact NO (0>1,5k Ω / 1<0,5k Ω), or balanced input (1x2k2, 2x1k1)
Galvanic isolation	No
Binary outputs	
Quantity, type	8, to drive LED indicators
Max, output current	3 mA
Open collector PNP	
max. voltage	27V
Galvanic isolation	No

Power supply	
Power supply and	24 V (27 V) from the
communication	CIB
Nominal power	30 mA
consumption	
Max. power	65 mA
consumption	
Operating and installa	tion conditions
Operating temperature	0 ÷ +70 °C
Storage temperature	-25 ÷ +85 °C
IP degree of protection	IP10B
acc. IEC 529	
Overvoltage category	II (according to EN
	60664)
Degree of pollution	1 (according to EN
	60664)
Operating position	Arbitrary
Type of operation	Continuous

Universal inputs, Analog	Universal inputs, Analog inputs					
Quantity of universal	2					
inputs						
Optional types of	Binary, balanced, Pt1000,					
universal inputs	Ni1000, NTC12kΩ, KTY81-					
	121, resistance 160kΩ					
Quantity of analog	1					
inputs.						
Optional types of analog	Binary, Pt1000, Ni1000,					
inputs	NTC12kΩ, KTY81-121,					
	resistance 160kΩ					
Resolution	0.1 °C / 10Ω					
Accuracy	0,5 %					
Period of refresh Al	typically 5s					
Galvanic isolation	No					

Universal inputs, Ana	Universal inputs, Analog inputs					
Binary input	Normally open contact NO					
	(0>1,5kΩ / 1<0,5kΩ),					
Balanced input for	Resistance 1x2k2, or 2x1k1					
security detectors						
Pt1000	–90 ÷ +320 °C					
Ni1000	–60 ÷ +200 °C					
NTC 12kΩ	–40 ÷ +125 °C					
KTY81-121	–55 ÷ +125 °C					
Resistance input	0 ÷ 160kΩ					
Dimensions and weig	ght					
Dimensions	max. 55 × 26 × 16mm					
Weight	7 g					
Installation						
Туре	under cover of device					
Connecting	Ribbon cable 0.15mm ² (CIB)					
	removable connectors with					
	separated wires 0.14 mm ² /10cm					

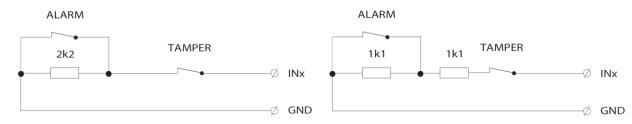


Fig. 3. 54 Simply balanced input for security detectors Fig. 3. 55 Double-balanced input for security detectors

3.24.1. Configuration

C-IT-09085	
Nastavení binárních vstupů	
🥅 DI1 : Vyvážený vstup (zabezpečovačka)	🔲 Vstup má dvojité vyvážení
🔲 DI2 : Vyvážený vstup (zabezpečovačka)	🔽 Vstup má dvojité vyvážení
🔲 DI3 : Vyvážený vstup (zabezpečovačka)	🔽 Vstup má dvojité vyvážení
🔲 DI4 : Vyvážený vstup (zabezpečovačka)	🔽 Vstup má dvojité vyvážení
DI5 : Vyvážený vstup (zabezpečovačka)	🔲 Vstup má dvojité vyvážení
DI6 : Vyvážený vstup (zabezpečovačka)	Vstup má dvojité vyvážení
🔲 DI7 : Vyvážený vstup (zabezpečovačka)	🔽 Vstup má dvojité vyvážení
🔲 DI8 : Vyvážený vstup (zabezpečovačka)	📕 Vstup má dvojité vyvážení
Prodleva vyhodnocení dlouhého stisku	0,7 🚖 s
Nastavení analogových vstupů	
AI7, AI8 - : Typ vstupu Ni1000 W100 = 1,617	▼ Filtrace vstupu 0,0 ◆
AI9 : Typ vstupu Ni1000 W100 = 1,617	▼ Filtrace vstupu 0,0 ◆
	🖌 OK 🛛 🗶 Zrušit

Fig. 3.56 Module configuration

The input terminals DI/AI7 and DI/AI8 are **shared** for both binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. In terms of configuration, the analog inputs are divided into two groups, 2 +1. In the first group there are the inputs AI7-AI8, the second group there is stand alone input AI9. Depending on the configured type of input (as enabled device) the specific items are accessible / inaccessible in configuration dialog. Enabling devices see. chap.2.1 Master configuration, check the box Show units, devices.

Balanced input

By checking the item, the respective input will be evaluated as a simple balanced binary alarm input. If the item is not checked, the respective input evaluated as a normal binary input (on/off).

Double balanced input

By checking the item, respective input will be evaluated as a double balanced binary alarm input. If the item is not checked and the input is configured for security systems (balanced input), the respective input evaluated as alarm input with a simple balance.

Delay, evaluation of long press

For binary (momentary button) inputs module directly evaluate the short and long presses on each input. By entering values one can set a delay time after which the activation of digital input DI is signalled as the long press (PRESS).Activating the digital input for period shorter than the entered value will be signalled as the short press (CLICK). Delay period (T_{press}) can be inserted in the range 0.1÷2.5s.

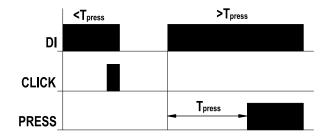


Fig. 3. 57 Evaluation of short / long press

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12kΩ at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160kΩ)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

x - the current value of the analog input

yt - output

- y_{t-1} recent output
- -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

3.24.1. The structure of the transmitted data

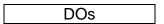
Module contains 5 devices in total:

-	device	1,	input,	8*DI/EZ	S
-	device	2,	output,	8*DO	
-	device	З,	input,	1*STAT	(status AIx)
-	device	4,	input,	2*AI	(input AI7, AI8)
-	device	5,	input,	1*AI	(input AI9)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon $\boxed{10}$ in toolbar.

Struktura dat		Úplný zápis 🖣	Alias	Svorka ⁴	Abs./délka ⁴	Hodnota
□ID1_IN : TMI_CIB1_ID1_IN		MI_CIB1_IN~ID1_IN				
DI : TCIB_CIT09_DI	÷.	MI_CIB1_IN~ID1_IN~DI			%R4/4	
STAT : TCIB_CIT09_STAT		MI_CIB1_IN~ID1_IN~STAT				\$00
- OUF7 : BOOL	÷.	MI_CIB1_IN~ID1_IN~STAT~OUF7			%R8.0	0
VLD7 : BOOL	÷.	MI_CIB1_IN~ID1_IN~STAT~VLD7			%R8.1	0
	÷	MI_CIB1_IN~ID1_IN~STAT~OUF8			%R8.2	0
-VLD8 : BOOL	÷.	MI_CIB1_IN~ID1_IN~STAT~VLD8			%R8.3	0
-OUF9 : BOOL	÷.	MI_CIB1_IN~ID1_IN~STAT~OUF9			%R8.4	0
VLD9 : BOOL	۰.	MI_CIB1_IN~ID1_IN~STAT~VLD9			%R8.5	0
AI : TCIB_CIT09_AI		MI_CIB1_IN~ID1_IN~AI				
AI7 : REAL	•	MI_CIB1_IN~ID1_IN~AI~AI7			%RF9	0
AI8 : REAL	Ļ.	MI_CIB1_IN~ID1_IN~AI~AI8			%RF13	0
AI9 : REAL	۰.	MI_CIB1_IN~ID1_IN~AI9			%RF17	0
DID1_OUT : TMI_CIB1_ID1_OUT		MI_CIB1_OUT~ID1_OUT				\$00
Ė-DOs ∶TCIB_DO8		MI_CIB1_OUT~ID1_OUT~DOs				\$00
- DO1 : BOOL	e	MI_CIB1_OUT~ID1_OUT~DOs~DO1			%R21.0	0
- DO2 : BOOL	r	MI_CIB1_OUT~ID1_OUT~DOs~DO2			%R21.1	0
	r	MI_CIB1_OUT~ID1_OUT~DOs~DO3			%R21.2	0
-DO4 : BOOL	r	MI_CIB1_OUT~ID1_OUT~DOs~DO4			%R21.3	0
- DO5 : BOOL	C	MI_CIB1_OUT~ID1_OUT~D0s~D05			%R21.4	0
	r	MI_CIB1_OUT~ID1_OUT~DOs~DO6			%R21.5	0
	r	MI_CIB1_OUT~ID1_OUT~DOs~DO7			%R21.6	0
DO8 : BOOL	r	MI_CIB1_OUT~ID1_OUT~DOs~DO8			%R21.7	0

Fig. 3.58 The structure of the transmitted data


Input data

	DI	STAT		AI			Al9		
DI	- status of bir	- status of binary inputs, short pulses, long pulses, tamper (32x type bool)							
	PRESSx	 DIx - Current status of binary input DIx / alarm input x CLICKx - short pulse (to log. 1) on input DIx PRESSx - long pulse (into log. 1) on input DIx TAMPERx - "tamper" status of alarm input x 							
STAT	- status byte	of analog inputs	(8x type b	ool)					
	Bit .7	- VLD .6 .5	9 OUF9 .4	VLD8 .3	OUF8 .2	VLD7 .1	OUF7 .0		
		erflow / underflo idity of reading o	0		og input A	Alx			
Axl	 AxI - value of analog inputs (2x type real) [°C],[kΩ] AI7 - value of analog input AI7 AI8 - value of analog input AI8 								

Al9 - value of analog input Al9 (1x type real) [°C],[kΩ]

The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range $160k\Omega$ is transferred in $k\Omega$ (with resolution of 10Ω).

Output data

DOs

- status of binary LED outputs (8x type bool)

	DO8	DO7	DO6	DO5	DO4	DO3	DO2	DO1
Bit	.7	.6	.5	.4	.3	.2	.1	.0

DOx - value of binary LED output DOx

3.24.2. Module specifics

For the proper operation of this module in the CIB network the firmware version in the parent module CIB master MI2-01M / MI2-02M is required to be at least v1.6 or higher!!!

3.25. C-OR-0008M

Module contains 8 relay outputs. Each output has the changeover contacts. Each output can be locally manually controlled by buttons on the module. Mechanical design corresponds to the modular design with width of 6M for mounting on the DIN-rail.

Due to the higher power consumption module has two power options. Either it is powered directly from the CIB line, or is supplied from an external source. In case of power supply module directly from the CIB line is necessary to keep the total maximum load CIB If the connection load is exceeded, the modules must be C-OR-0008 supplied from external sources (there is a strain CIB lines(see chapter 2.3 Power CIB bus). If the load of the CIB line is exceeded , the modules C-OR-0008 must be supplied from external sources (to relieve CIB load).

After connecting the module to the CIB line (power connected) the green RUN LED lights still. If the module is served by the CIB (it communicates), green RUN LED flashes regularly.

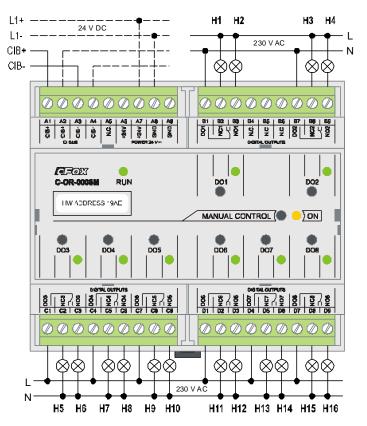


Fig. 3. 59 View and connection C-OR-0008M

Tab. 3.25 Basic parameters (C-OR-0008M
------------------------------	------------

Binary relay outputs					
Quantity	8				
Outputs in group	1				
Type of contacts	Changeover (NO / NC)				
Switched voltage	Max. 300V AC / DC				
	Min. 5V				
Switched current	Min. 100 mA				
	Max. 16 A pro NO				
	Max. 10 A pro NC				
Closing time	15 ms				
Opening time	5 ms				

Binary relay outputs						
Galvanic isolation	Yes					
Insulation voltage						
 between outputs 						
and internal circuits	4000 V AC					
 between contacts 	1000 V AC					
Mechanical lifetime	Min. 20 000 000 cycles					
Electrical lifetime	Min. 50 000 cycles					

Protection against short circuit	No					
Protection against inductive load	External (RC circuit, diode, varistor)					
Power supply						
Power supply and communication	24 V (27 V) from the CIB					
External power	24 V DC					
Max. power consumption	160 mA					
Dimensions and weight						
Dimensions	90 × 58 × 105mm					
Weight	310g					

Operating and installation conditions						
Operating temperature	-10 ÷ +55 °C					
Storage temperature	-25 ÷ +70 °C					
IP degree of protection acc. IEC 529	IP10B					
Operating position	Vertical					
Type of operation	Continuous					
Installation	on DIN rail					
Connection terminals	Screw-type					
Cross-section of wires	Max. 4 mm ²					

3.25.1. Configuration

C-OR-0008M		B
Nastavení binárních výstupů		
Nastavení blokace DO1	Zmrazení aktuálního stavu	 Blokovat manuální režim
Nastavení blokace DO2	Nulování/odepnutí výstupu	📕 🔲 Blokovat manuální režim
Nastavení blokace DO3	Zmrazení aktuálního stavu	 Blokovat manuální režim
Nastavení blokace DO4	Zmrazení aktuálního stavu	Blokovat manuální režim
Nastavení blokace DO5	Zmrazení aktuálního stavu	 Blokovat manuální režim
Nastavení blokace DO6	Zmrazení aktuálního stavu	📕 🔲 Blokovat manuální režim
Nastavení blokace DO7	Zmrazení aktuálního stavu	 Blokovat manuální režim
Nastavení blokace DO8	Zmrazení aktuálního stavu	📕 🔲 Blokovat manuální režim
		CK Zrušit

Fig. 3.60 Module configuration

Blocking of DO

It can be set for binary outputs and for analog output AO1 if they should stay in their last state or they should be disconnected during transition into HALT mode.

Blocking of manual mode

Checking the box the ability to manually control specific relay outputs in RUN mode is blocked. In the HALT mode the manual control of relay outputs is always allowed.

In RUN mode, the manual control is activated by pressing the button *MANUAL CONTROL* on module. At the same time the yellow indicator LED lights up *ON*. Then it is possible to change the status of each output by respective buttons. Another pressing the button *MANUAL CONTROL* LED indicator *ON* goes off and the manual mode is cancelled. Then LED outputs are controlled according to the commands of the CIB line. Activity of manual mode is also indicated in the module status variable *STAT.ManMode*.

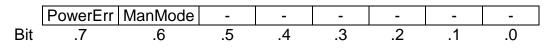
3.25.1. The structure of the transmitted data

Module contains 2 devices in total:

- device 1, input, 1*STAT (status)
- device 2, output, 8*DO

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon $\boxed{10}$ in toolbar.

Struktura dat	Úplný zápis 🖣	Alias ⁴	Svorka [∉]	Abs./délka ⁴	Hodnota
E Statistic_MIO_CIB1 💠 TCHStatis	r3_p0_Statistic_MI0_CIB1			%X10 / 10	
Control_MI0_CIB1 : TCHControl	r3_p0_Control_MI0_CIB1			%Y7/2	\$0000
□ID1_IN : TMI0_CIB1_ID1_IN	MIO_CIB1_IN~ID1_IN				\$00
⊨ STAT : TCIB_COR_STAT	MIO_CIB1_IN~ID1_IN~STAT				\$00
—ManMode : BOOL 🛛 🗛	MI0_CIB1_IN~ID1_IN~STAT~ManMode			%R212.6	0
-PowerErr : BOOL	MI0_CIB1_IN~ID1_IN~STAT~PowerErr			%R212.7	0
DID1_OUT : TMI0_CIB1_ID1_OUT	MI0_CIB1_OUT~ID1_OUT				\$00
⊟-DOs : TCIB_DO8	MI0_CIB1_OUT~ID1_OUT~DOs				\$00
—DO1 : BOOL 📑	MI0_CIB1_OUT~ID1_OUT~D0s~DO1			%R213.0	0
— DO2 : BOOL 📑	MI0_CIB1_OUT~ID1_OUT~D0s~DO2			%R213.1	0
— DO3 : BOOL 📑	MI0_CIB1_OUT~ID1_OUT~D0s~DO3			%R213.2	0
DO4 : BOOL 📑	MI0_CIB1_OUT~ID1_OUT~D0s~DO4			%R213.3	0
— DO5 : BOOL 📑	MI0_CIB1_OUT~ID1_OUT~D0s~D05			%R213.4	0
— DOG : BOOL 📑	MI0_CIB1_OUT~ID1_OUT~D0s~D06			%R213.5	0
— DO7 : BOOL 📑	MI0_CIB1_OUT~ID1_OUT~D0s~D07			%R213.6	0
-DO8 : BOOL 📑	MI0_CIB1_OUT~ID1_OUT~D0s~D08			%R213.7	0


Fig. 3.61 The structure of the transmitted data

Input data

STAT

STAT

- status byte of module (8x type bool)

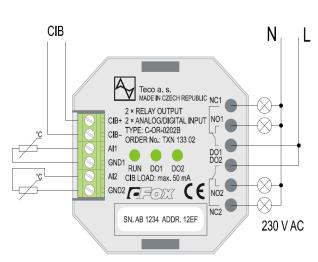
ManMode - signalling of manual control mode of binary outputs. PowerErr - supply voltage drop below the limit for guaranteed switching of relay outputs DO

Output data

DOs

DOs

- value of binary outputs (8x type bool)


	DO8	DO7	DO6	DO5	DO4	DO3	DO2	DO1
Bit	.7	.6	.5	.4	.3	.2	.1	.0

DOx - value of binary output DOx

3.26. C-OR-0202B

The module contains 2 relay outputs with changeover contact and 2 analog/digital inputs. Inputs allow connection of temperature sensor or potential-free switching contacts. The module is mechanically designed in the "box" for mounting into a flush installation box.

After connecting the module to the CIB line (power connected) the green RUN LED lights still. If the module is served by the CIB (it communicates), green RUN LED flashes regularly.LED indicators DOx indicate the status of binary outputs.

Fig. 3. 62 view C-OR-0202B

Power supply						
Power supply and	24 V (27 V) from the					
communication	CIB					
Max. power	50mA					
consumption						
Galvanic isolation	No					
Dimensions and weight						
Dimensions	50 × 50 × 30mm					
Weight	70 g					
Operating and installation conditions						
Operating temperature	-10 ÷ +55 °C					
Storage temperature	-25 ÷ +70 °C					
IP degree of protection	IP20B					
acc. IEC 529						
Operating position	Arbitrary					
Type of operation	Continuous					

Universal inputs AI/DIQuantity2Optional types of inputsBinary, balanced, Pt1000, Ni1000, NTC12kQ, KTY81- 121, resistance 160kQBinary inputNO - normally open dry contactBalanced input for security detectorsResistance 1x2k2, or 2x1k1 security detectorsPt1000 $-90 \div +320 \ ^{\circ}C$ Ni1000 $-60 \div +200 \ ^{\circ}C$ NTC 12kQ $-40 \div +125 \ ^{\circ}C$ KTY81-121 $-55 \div +125 \ ^{\circ}C$ Resistance input $0 \div 160k\Omega$ Resolution $0.1 \ ^{\circ}C / 10\Omega$ Accuracy1) $0,5 \ ^{\circ}$ Period of refresh AItypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched currentmax. 16A for NO min. 5VSwitched currentmax. 10A for NO min. 100mAInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminalAI/DICross-section of wires Canset cablesConnecting the power cables $2.5 \ m^2$ length 90mm	Tab. 3.26 Basic parameters C-OR-0202B						
Optional types of inputsBinary, balanced, Pt1000, Ni1000, NTC12k Ω , KTY81- 121, resistance 160k Ω Binary inputNO - normally open dry contactBalanced input for security detectorsResistance 1x2k2, or 2x1k1Pt1000 $-90 \div +320 \ ^{\circ}C$ Ni1000 $-60 \div +200 \ ^{\circ}C$ NTC 12k Ω $-40 \div +125 \ ^{\circ}C$ KTY81-121 $-55 \div +125 \ ^{\circ}C$ Resistance input $0 \div 160k\Omega$ Resolution $0.1 \ ^{\circ}C / 10\Omega$ Accuracy ¹⁰ $0,5 \ ^{\circ}$ Period of refresh Altypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DC min. 5VSwitched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminalAI/DIConnecting the power cables	Universal inputs AI/DI						
Ni1000, NTC12kΩ, KTY81- 121, resistance 160kΩBinary inputNO - normally open dry contactBalanced input for security detectorsResistance 1x2k2, or 2x1k1Pt1000 $-90 \div +320 \degree C$ Ni1000 $-60 \div +200 \degree C$ NTC 12kΩ $-40 \div +125 \degree C$ KTY81-121 $-55 \div +125 \degree C$ Resistance input $0 \div 160k\Omega$ Resolution $0.1 \degree C / 10\Omega$ Accuracy ¹¹ $0,5 \%$ Period of refresh Altypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DC min. 5VSwitched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminalAI/DIConnecting the power cables		2					
contactBalanced input for security detectorsResistance $1x2k2$, or $2x1k1$ Pt1000 $-90 \div +320 \degree C$ Ni1000 $-60 \div +200 \degree C$ NTC $12k\Omega$ $-40 \div +125 \degree C$ KTY81-121 $-55 \div +125 \degree C$ Resolution $0.1 \degree C / 10\Omega$ Accuracy ¹⁾ $0,5 \%$ Period of refresh Altypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. $300V AC/DC$ min. $5V$ Switched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminalAI/DIConnecting the power cablesGalvanic ting the power cables6x cable CY		Ni1000, NTC12kΩ, KTY81-					
security detectorsPt1000 $-90 \div +320 \ ^{\circ}C$ Ni1000 $-60 \div +200 \ ^{\circ}C$ NTC 12k Ω $-40 \div +125 \ ^{\circ}C$ KTY81-121 $-55 \div +125 \ ^{\circ}C$ Resistance input $0 \div 160k\Omega$ Resolution $0.1 \ ^{\circ}C / 10\Omega$ Accuracy ¹¹ $0,5 \ ^{\circ}$ Period of refresh AItypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DCmin. 5VSwitched currentInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminalAI/DICross-section of wiresConnecting the power cables6x cable CY	Binary input						
Ni1000 $-60 \div +200 \ ^{\circ}C$ NTC 12k Ω $-40 \div +125 \ ^{\circ}C$ KTY81-121 $-55 \div +125 \ ^{\circ}C$ Resistance input $0 \div 160k\Omega$ Resolution $0.1 \ ^{\circ}C / 10\Omega$ Accuracy ¹⁾ $0,5 \ ^{\circ}$ Period of refresh AItypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DCmin. 5VSwitched currentSwitched currentmax. 16A for NOmax. 10A for NOmin. 100mAInstallationScrew type terminalAl/DIConnecting CIB and Al/DIConnecting the power cables6x cable CY	security detectors						
NTC 12kΩ $-40 \div +125 °C$ KTY81-121 $-55 \div +125 °C$ Resistance input $0 \div 160k\Omega$ Resolution $0.1 °C / 10\Omega$ Accuracy ¹⁾ $0,5 %$ Period of refresh Altypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DC min. 5VSwitched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationScrew type terminal AI/DIConnecting CIB and AI/DIScrew type terminal 6x cable CY cables							
KTY81-121 $-55 \div +125 \degree C$ Resistance input $0 \div 160k\Omega$ Resolution $0.1 \degree C / 10\Omega$ Accuracy ¹⁾ $0,5 \%$ Period of refresh AItypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DC min. 5VSwitched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminalAI/DIConnecting the power cablesGalvanic time power cables6x cable CY							
Resistance input $0 \div 160k\Omega$ Resolution $0.1 \degree C / 10\Omega$ Accuracy1) $0,5 \%$ Period of refresh AItypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DC min. 5VSwitched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminalAI/DICross-section of wires 6x cable CY cables	NTC 12kΩ						
Resolution 0.1 °C / 10Ω Accuracy ¹⁾ 0,5 % Period of refresh AI typically 5s Galvanic isolation of CIB No Binary outputs DO Quantity Quantity 2 Number of outputs in group 1 Type of operation relay, changeover contacts Switched voltage max. 300V AC/DC min. 5V Switched current max. 16A for NO max. 10A for NO min. 100mA Installation Type Type into the flush box Connecting CIB and AI/DI Screw type terminal AI/DI 6x cable CY Connecting the power 6x cable CY	KTY81-121	–55 ÷ +125 °C					
Accuracy1)0,5 %Period of refresh AItypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DC min. 5VSwitched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminal AI./DIConnecting the power cables6x cable CY	Resistance input						
Period of refresh AItypically 5sGalvanic isolation of CIBNoBinary outputs DOQuantityQuantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DC min. 5VSwitched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminal 6x cable CY cables		0.1 °C / 10Ω					
Galvanic isolation of CIB No Binary outputs DO 2 Quantity 2 Number of outputs in group 1 Type of operation relay, changeover contacts Switched voltage max. 300V AC/DC min. 5V Switched current max. 16A for NO max. 10A for NO min. 100mA Installation Type Type into the flush box Connecting CIB and AI/DI Screw type terminal AI/DI Connecting the power 6x cable CY 6x cable CY	Accuracy ¹⁾	0,5 %					
Galvanic isolation of CIBNoBinary outputs DO2Quantity2Number of outputs in group1Type of operationrelay, changeover contactsSwitched voltagemax. 300V AC/DC min. 5VSwitched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationTypeTypeinto the flush boxConnecting CIB and AI/DIScrew type terminalAI/DIConnecting the power cables	Period of refresh Al	typically 5s					
Quantity 2 Number of outputs in group 1 Type of operation relay, changeover contacts Switched voltage max. 300V AC/DC min. 5V Switched current Switched current max. 16A for NO min. 100mA Installation Type into the flush box Connecting CIB and AI/DI Screw type terminal Connecting the power 6x cable CY cables 6x cable CY	Galvanic isolation of CIB						
Number of outputs in group 1 Type of operation relay, changeover contacts Switched voltage max. 300V AC/DC min. 5V Switched current max. 16A for NO max. 10A for NO min. 100mA Installation Type Type into the flush box Connecting CIB and AI/DI Screw type terminal Connecting the power contacts max. 1.5 mm ² Connecting the power contacts 6x cable CY							
group relay, changeover contacts Type of operation relay, changeover contacts Switched voltage max. 300V AC/DC min. 5V Switched current Switched current max. 16A for NO max. 10A for NO min. 100mA Installation Type Type into the flush box Connecting CIB and Screw type terminal AI/DI Cross-section of wires Connecting the power 6x cable CY cables 6x cable CY		2					
Switched voltagemax. 300V AC/DC min. 5VSwitched currentmax. 16A for NO max. 10A for NO min. 100mAInstallationTypeinto the flush boxConnecting CIB and Al/DIScrew type terminalCross-section of wiresmax. 1.5 mm²Connecting the power cables6x cable CY	group	1					
min. 5V Switched current max. 16A for NO max. 10A for NO min. 100mA Installation Type into the flush box Connecting CIB and Al/Dl Screw type terminal Cross-section of wires max. 1.5 mm ² Connecting the power cables 6x cable CY	Type of operation						
max. 10A for NO min. 100mAInstallationTypeinto the flush boxConnecting CIB and AI/DIScrew type terminalCross-section of wiresmax. 1.5 mm²Connecting the power cables6x cable CY	Ū.	min. 5V					
Typeinto the flush boxConnecting CIB and AI/DIScrew type terminalCross-section of wiresmax. 1.5 mm²Connecting the power cables6x cable CY		max. 10A for NO					
Connecting CIB and AI/DIScrew type terminalCross-section of wiresmax. 1.5 mm²Connecting the power cables6x cable CY	Installation						
Al/DI Cross-section of wires max. 1.5 mm ² Connecting the power 6x cable CY cables							
Connecting the power 6x cable CY cables	AI/DI						
cables	Cross-section of wires						
Cross-section of wires 2.5 mm ² length 90mm	cables						
¹⁾ The measurement error rises for resistors higher		2.5 mm ² , length 90mm					

¹⁾ The measurement error rises for resistors higher than 50kΩ.

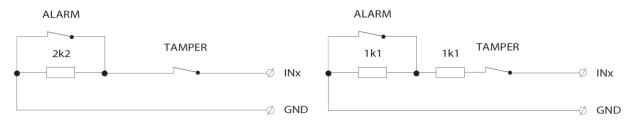


Fig. 3. 63 Simply balanced input for security detectors Fig. 3. 64 Double-balanced input for security detectors

 $\cap \square$ $\cap \cap \cap \square$

3.26.1. Configuration

C-OR-0202B				×
Nastavení binárních vstupů DI1 : Vyvážený vstup (zabezper DI2 : Vyvážený vstup (zabezper		Vstup má dvojité vy Vstup má dvojité vy		
	00 W100 = 1,385	Filtrace vstup	- I	0,0 👤
AI2 : Typ vstupu Pt10	00 W100 = 1,385	Filtrace vstup		o,ol 🍨
DO1 : Nastavení blokace DO2 : Nastavení blokace	Zmrazení aktuálního s Zmrazení aktuálního s			
			ок	🗶 Zrušit

Fig. 3.65 Module configuration

The input terminals DI/AIx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. *2.1 Master configuration*, check the box *Show units, devices*

Balanced input

By checking the item, the respective input will be evaluated as a simple balanced binary alarm input. If the item is not checked, the respective input evaluated as a normal binary input (on/off).

Double balanced input

By checking the item, respective input will be evaluated as a double balanced binary alarm input. If the item is not checked and the input is configured for security systems (balanced input), the respective input evaluated as alarm input with a simple balance.

Type of input

Choosing the type of analog input:

```
Pt1000, W_{100} = 1,385, -90/+320°C

Pt1000, W_{100} = 1,391, -90/+320°C

Ni1000, W_{100} = 1,617, -60/+200°C

Ni1000, W_{100} = 1,500, -60/+200°C

NTC 12k (negative thermistor, 12k\Omega at 25°C), -40/+125°C

KTY 81-121, -55/+125°C

OV160k (0 ÷ 160k\Omega)
```

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

х	- the current value of the analog input
y t	- output
yt₋1	- recent output
ζ	-time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Blocking of DO

It can be set for binary outputs and for analog output AO1 if they should stay in their last state or they should be disconnected during transition into HALT mode.

3.26.2. The structure of the transmitted data

Module contains 5 devices in total:

-	device	1,	input,	•	1*STAT	(status	AI)	
-	device	2,	input,		1*AI	(analog	input	1)
-	device	З,	input,		1*AI	(analog	input	2)
-	device	4,	input,		2*DI			
-	device	5,	output,		2*D0			

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis	Alias	Svorka	Abs./délka4	Hodnota
DILIN : TMIO_CIB1_ID1_IN	MIO_CIB1_IN~ID1_IN				
STAT : TCIB_AI2_STAT	MIO_CIB1_IN~ID1_IN~STAT				
-OUF1 : BOOL	MI0_CIB1_IN~ID1_IN~STAT~OUF1			%R144.0	
-VLD1 : BOOL	MI0_CIB1_IN~ID1_IN~STAT~VLD1			%R144.1	
-OUF2 : BOOL	MI0_CIB1_IN~ID1_IN~STAT~OUF2			%R144.2	
-VLD2 : BOOL	MI0_CIB1_IN~ID1_IN~STAT~VLD2			%R144.3	
-Al1 : REAL	MI0_CIB1_IN~ID1_IN~AI1			%RF145	
-AI2 : REAL	MI0_CIB1_IN~ID1_IN~AI2			%RF149	
⊟- DI : TCIB_DI2T	MIO_CIB1_IN~ID1_IN~DI				
-DI1 : BOOL	MI0_CIB1_IN~ID1_IN~DI~DI1			%R153.0	
— DI2 : BOOL	MI0_CIB1_IN~ID1_IN~DI~DI2			%R153.1	
-TAMPER1 : BOOL	MI0_CIB1_IN~ID1_IN~DI~TAMPER1			%R153.4	
-TAMPER2 : BOOL	MI0_CIB1_IN~ID1_IN~DI~TAMPER2			%R153.5	
□ ID1_OUT : TMI0_CIB1_ID1_OUT	MIO_CIB1_OUT~ID1_OUT				
Ė-DOs ∶TCIB_DO2	MI0_CIB1_OUT~ID1_OUT~DOs				
-DO1 : BOOL	MIO_CIB1_OUT~ID1_OUT~DOs~DO1			%R154.0	
-DO2 : BOOL	MI0_CIB1_OUT~ID1_OUT~DOs~DO2			%R154.1	

CIB UNITS, MODULES

The structure of the transmitted data Fig. 3.66

Input data

	STAT AI1 AI2 DI							
STAT	STAT - status byte of analog inputs (8x type bool)							
	- - - VLD2 OUF2 VLD1 OUF1 Bit .7 .6 .5 .4 .3 .2 .1 .0							
	OUF1 - overflow / underflow of range of analog input Al1 VLD1 - Al1 analog input reading validity OUF2 - overflow / underflow of range of analog input Al2 VLD2 - Al2 analog input reading validity							
AI1	- value of analog input AI1 (type real) [°C],[kΩ]							
AI2	- value of analog input Al2 (type real) [°C],[kΩ]							
	The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range $160k\Omega$ is transferred in $k\Omega$ (with resolution of 10Ω).							
DI	- status of binary inputs, signalling "tamper" status of alarm inputs (8x type bool)							
	TAMPER2 TAMPER1 DI2 DI1							
	Bit .7 .6 .5 .4 .3 .2 .1 .0							
	DI1 - the current status of the binary DI1/balanced for alarm input1							
	DI2 - the current status of the binary DI2/balanced for alarm input 2							
	TAMPER1 - tamper status on balanced input 1 TAMPER2 - tamper status on balanced input 2							
Output c	a							
	DOs							
DOs	- value of binary outputs (8x type bool)							

3.27. C-RC-0002R

Module in interior design for office and residential interiors is designed to display the current temperature and set the new request temperature. The module thus serves as a simpler variant of the Room Control Manager. Includes 3-digit LCD display, 3 buttons and 1 LED indicator. Internal temperature sensor is integrated in the module. The module also has a universal DI/AI input that can be configured to connect external temperature sensor (e.g. temperature of the floor heating).

Module is designed to be installed on the wall into flush box. The module consists of two parts. The first part contains the interior unit, the second part is used to connect the module to the CIB bus. Both parts are connected to each other by ribbon cable with connector. Signalling green RUN LED is accessible from the side of module opposite to ribbon cable. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

Module is designed for Time and Element designs of ABB production. For actual offer of designs see the catalogue of Teco

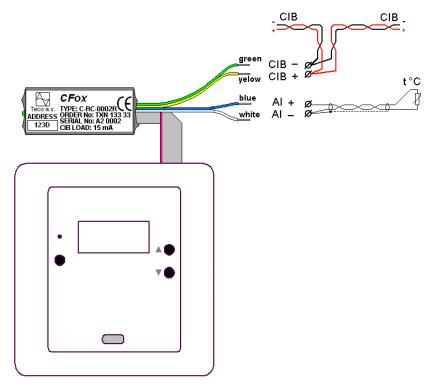


Fig. 3. 67 View and connection C-RC-0002R

Tab. 3.27 Basic parameters C-RC-00)02R
------------------------------------	------

Display			
Туре	7-segment LCD		
Number of digits	3		
Buttons			
Quantity	3		
Туре	Momentary button		
LÉD			
Quantity	1		
Colour	Green		
Internal thermometer			
Range	0 ÷ +50 °C		
Resolution	0.1°C		
Measurement error	±0.5°C		

Analog input	
Quantity	1
Sensor type	NTC 5k, 10k, 12k, 15k, 20k
Range	0 ÷ +90 °C
Resolution	0.1°C
Measurement error	±0.5°C
Sensor type	OV100k
Range	0 ÷ 100kΩ
Resolution	0.1kΩ pro 0 ÷ 25kΩ
	0.2kΩ pro 25 ÷ 50kΩ
	0.5kΩ pro 50 ÷ 100kΩ
Measurement error	$\pm 0.5 k\Omega$ pro $0 \div 50 k\Omega$
	±1kΩ pro 50 ÷ 100kΩ

Power supply				
Power supply and	24 V (27 V) from the			
communication	CIB			
Max. power	15 mA			
consumption				
Dimensions and weight				
Dimensions				
 front panel 	83 × 81 × 25mm			
- bus coupler	56 × 26 × 16mm			
Weight	80g			

Operating and installation conditions				
Operating temperature	0 ÷ +50 °C			
Storage temperature	-25 ÷ +70 °C			
IP degree of protection acc. IEC 529	IP10B			
Operating position	Arbitrary			
Type of operation	Continuous			
Installation	Into the flush box			
Connecting	Ribbon cable 0.15mm ²			

3.27.1. Configuration

C-RC-0002R			×
Offset teploty (korekce +-)	Typ senzoru		
iTHERM : Interní teploměr 0,0 🚔 °C			
eTHERM : Externí teploměr 0,0 🚔 °C	Externí teploměr	NTC-12k	•
	С		🗶 Zrušit

Fig. 3.68 Module configuration

Temperature offset

Correction offset of thermometer, which will be added on the measured temperature.

Sensor type

Choosing type of external analog sensor:

NTC 5k (negative thermistor, $5k\Omega$ at 25° C), $0/+90^{\circ}$ C NTC 10k (negative thermistor, $10k\Omega$ at 25° C), $0/+90^{\circ}$ C NTC 12k (negative thermistor, $12k\Omega$ at 25° C), $0/+90^{\circ}$ C NTC 15k (negative thermistor, $15k\Omega$ at 25° C), $0/+90^{\circ}$ C NTC 20k (negative thermistor, $20k\Omega$ at 25° C), $0/+90^{\circ}$ C OV100k ($0 \div 100k\Omega$)

3.27.2. The structure of the transmitted data

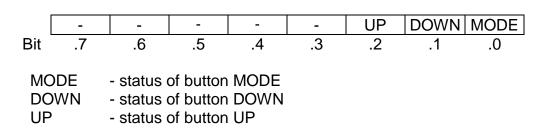
Module contains 5 devices in total:

 device 1, input, 	1*STAT	(status AI)
 device 2, input, 	1*AI	(internal thermometer)
 device 3, input, 	1*AI	(external thermometer)
 device 4, input, 	3*DI	(buttons)
- device 5, input,	1*DISP	(display)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis 🖣	Alias ⁴	Svorka	Abs./délka4	Hodnota
□ ID1_IN : TMI0_CIB1_ID1_IN	MIO_CIB1_IN~ID1_IN				
⊨-STAT : TCIB_CRC_STAT	MIO_CIB1_IN~ID1_IN~STAT				\$00
-OUF1 : BOOL	MI0_CIB1_IN~ID1_IN~STAT~OUF1			%R224.0	0
	MI0_CIB1_IN~ID1_IN~STAT~VLD1			%R224.1	0
-OUF2 : BOOL 🗕	MI0_CIB1_IN~ID1_IN~STAT~OUF2			%R224.2	0
	MI0_CIB1_IN~ID1_IN~STAT~VLD2			%R224.3	0
DISP : BOOL 🔒	MI0_CIB1_IN~ID1_IN~STAT~DISP			%R224.4	0
itherm : real	MI0_CIB1_IN~ID1_IN~iTHERM			%RF225	0
-etherm : real 🍒	MI0_CIB1_IN~ID1_IN~eTHERM			%RF229	0
BTN : TCIB_CRC_BTN	MIO_CIB1_IN~ID1_IN~BTN				\$00
MODE : BOOL 🗛	MI0_CIB1_IN~ID1_IN~BTN~MODE			%R233.0	0
-DOWN : BOOL -	MI0_CIB1_IN~ID1_IN~BTN~DOWN			%R233.1	0
UP : BOOL 🚽	MI0_CIB1_IN~ID1_IN~BTN~UP			%R233.2	0
DILOUT : TMIO_CIB1_ID1_OUT	MIO_CIB1_OUT~ID1_OUT				
DISP : TCIB_CRC_DISP	MIO_CIB1_OUT~ID1_OUT~DISP				
—TEXT 💠 ARRAY (02) OF USINT 📑	MI0_CIB1_OUT~ID1_OUT~DISP~TEXT			%R234	0, 0, 0
-LED_ON : BOOL 🥵	MI0_CIB1_OUT~ID1_OUT~DISP~LED_ON			%R237.0	0
LED_Blink : BOOL 🥵	MI0_CIB1_OUT~ID1_OUT~DISP~LED_Blink			%R237.1	0
—Disp_OFF : BOOL 🥵	MI0_CIB1_OUT~ID1_OUT~DISP~Disp_OFF			%R237.4	0
—Disp_Blink : BOOL 📑	MI0_CIB1_OUT~ID1_OUT~DISP~Disp_Blink			%R237.5	0
—Dot1 : BOOL 🥵	MI0_CIB1_OUT~ID1_OUT~DISP~Dot1			%R237.6	0
-Dot2 : BOOL 🥵	MI0_CIB1_OUT~ID1_OUT~DISP~Dot2			%R237.7	0

Fig. 3.69 The structure of the transmitted data


Input data

	STAT	iTH	IERM	eTH	IERM	BT	N		
STAT	STAT - status byte of analog inputs (8x type bool)								
		-	-	-	-	VLD2	OUF2	VLD1	OUF1
	Bit	.7	.6	.5	.4	.3	.2	.1	.0
	VLD1	ir - overf -	nternal th Iow / unc	ermome derflow c	of interna eter read of range o eter read	ing valid of extern	ity al therm	-	
iTHER	M - value	of interi	nal therm	nometer	(type rea	al) [°C]			

eTHERM - value of external thermometer (type real) [°C]

The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range $100k\Omega$ is transferred in $k\Omega$ (with resolution of $0.1/0.2/0.5k\Omega$).

BTN - status of buttons (8x type bool)

Output data

DISP

DISP - variables of the LCD display (3x type usint + 6x type bool)

DISP.TEXT - ASCII characters to be displayed (see next chapter)

DISP.Disp_OFF DISP.Disp_Blink DISP.Dot1	 flashing of LED (in 150ms raster, at LED_ON=1) turn off the characters displayed on the screen flashing of displayed characters (in 150ms raster, at DISP_OFF=0) display 1st decimal point on the display
DISP.Dot2	- display 2nd decimal point on the display
DISP.Disp_Blink DISP.Dot1	- flashing of displayed characters (in 150ms raster, at <i>DISP_OFF</i> =0) - display 1st decimal point on the display

3.27.1. Module specifics

Integrated seven-segment LCD display module allows you to display only a limited set of ASCII characters. Displayable ASCII characters are listed in the following list:' ', ", Ξ, -, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, =, A, C, E, F, G, H, I, J, L, P, S, U,], °, _, b, c, d, h, i, n, o, r, t, u.

Module mounting

Complete module C-RC-0002R comes disassembled into 4 parts (housing with temperature sensor, intermediate frame, outer frame, set of the panel with display and bus coupler) because the easy installation at the end user site. The assembly process is described in detail in the documentation for the module (TXV 133 33), which is supplied with the module.

3.28. C-RC-0003R

LCD display module in interior design is intended to show the two values (e.g., temperature, humidity,) and four symbols (icons). The module also has a universal DI / AI input that can be configured to connect the contact of the switch button, or for connecting a resistive sensors (e.g. temperature of the floor heating). As a variant, the module can equipped with internal thermometer, hygrometer and three buttons.

Module is designed to be installed on the wall into flush box. The module consists of two parts. The first part contains the front panel unit (available in several design versions), the second part is used to connect the module to the CIB bus. Both parts are connected to each other by ribbon cable with connector. The green LED indicating the RUN mode is available from the side of the module next to the connector. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

Module is designed for various designs of wall switches from various manufacturers including EFAPEL, Bticino, LUTRON etc. For actual offer see the catalogue.

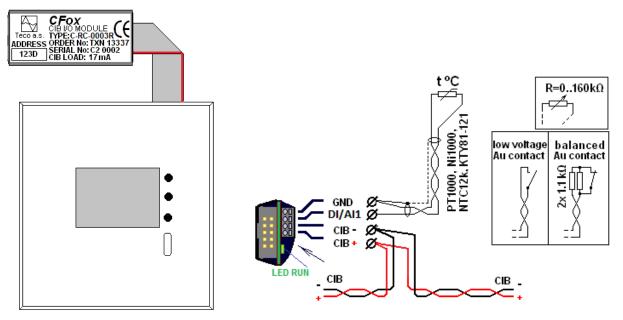


Fig. 3. 70 Preview and connection C-RC-0003R

1 ab. 5.20 Dasic par	ameters C-RC-0003R	
Display		
Туре	LCD backlight	
Size	27x21mm (98x64pixel)	
Number of displayed	2 + unit symbols	
values		
Number of	4	
symbols/icons		
Backlight	continuously adjustable	
Buttons (optional)		
quantity	3	
Туре	Momentary button	
Internal thermometer	optional)	
Range	-40 ÷ +125°C	
Resolution / accuracy	0.1 °C / typ. 0.3 °C	
The period of reading	typically 5s	
Internal hygrometer (o	ptional)	
Range	0 ÷ 100% RH	
Resolution / accuracy	1% / typ. 2%	

Universal input DI/AI	
quantity	1
Optional input type	Binary, Pt1000, Ni1000, NTC12kΩ, KTY81-121, resistance 160kΩ
Binary input	NO contact (0/1) (Normally Open)
Pt1000	–90 ÷ +320 °C
Ni1000	–60 ÷ +200 °C
NTC 12kΩ	–40 ÷ +125 °C
KTY81-121	–55 ÷ +125 °C
Resistor input	0 ÷ 160kΩ
Resolution	0.1 °C / 10Ω
Accuracy	0,5 % of range
The period of reading AI	typically 5s

Tab. 3.28 Basic parameters C-RC-0003R

typically 5s
24 V (27 V) from the
CIB
10mA (without
backlight)
17mA
nt
86 × 86 × 18mm
42 × 27 × 17mm
80g

Operating and installati	Operating and installation conditions				
Operating temperature	0 ÷ +50 °C				
Storage temperature	-25 ÷ +70 °C				
IP degree of protection acc. IEC 529	IP10B				
Operating position	arbitrary				
Type of operation	continuous				
Installation	Into the flush box				
Connecting the front panel	Ribbon cable 0.15mm ²				
Connecting the bus coupler	Spring-loaded terminals, 0.15 ÷ 0.5 mm ²				

3.28.1. Configuration

C-RC-00035			×
Nastavení binárních vstupů			
Prodleva vyhodnocení dlouhého s	stisku	0,7 🜻 s	
Nastavení analogových vstupů			
AI1 : Typ vstupu Pt	1000 W100 = 1,385	▼ Filtrace vstupu	0,0 🚖
Offset teploty (korekce +-) THERM : Interní teploměr	0,0 ♣ ∘⊂		
Displej			
Kontrast displeje	60 🌩		
Formát displeje	Typ 1	•	
Popis tlačitek	zakázán	-	
		🗸 ок	🛛 🗶 Zrušit

Fig. 3.71 Module configuration

Delay, evaluation of long press

For binary (momentary button) inputs module directly evaluate the short and long presses on each input. By entering values one can set a delay time after which the activation of digital input DI is signalled as the long press (PRESS). Activating the digital input for period shorter than the entered value will be signalled by as the short press (CLICK). Delay period (T_{press}) can be inserted in the range 0.1÷2.5s.

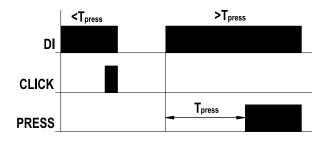


Fig. 3. 72 Evaluation of short/long press

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160k Ω)

Input filtering

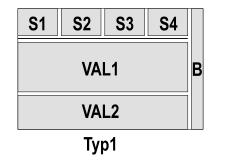
By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

х	- the current value of the analog input
Уt	- output
Уt-1	- recent output
ζ	-time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Temperature offset


Correction offset of thermometer, which will be added on the measured temperature.

Display contrast

Setting the display contrast, in the range 0 to 127 (0 - low contrast, 127 - high contrast).

Display layout

Graphical layout of the content of the display can be changed by the user. There is a choice of two options, *Type1* or *Type2*. Layout of the display is depicted below.

S1÷S4	 view symbols / modes
VAL1	 primary value including the unit
VAL2	- secondary value including the unit
В	- button labels

Button labels

Checking the box, the labels of each button will be displayed in B area.

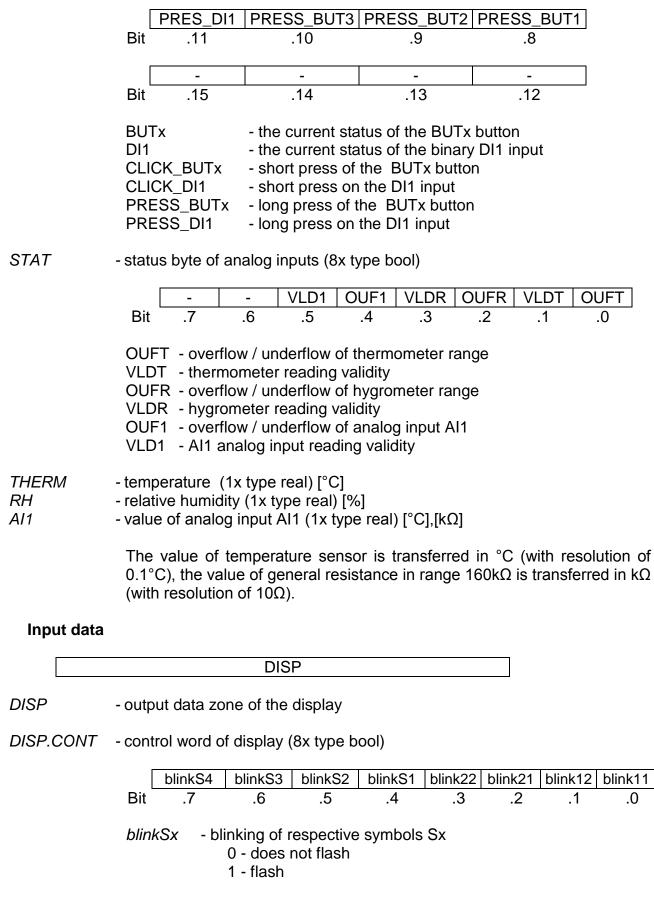
3.28.2. The structure of the transmitted data

Module contains 6 devices in total:

- device 1,	input,	3*BUTT + 1*DI	(button + DI1)
- device 2,	input,	1*DISP	(display)
- device 3,	input,	1*STAT	(status AI)
- device 4,	input,	1*AI	(internal thermometer)
- device 5,	input,	1*AI	(internal hygrometer)
- device 6,	input,	1*AI	(AI1)

The devices are incorporated into the structure of the transmitted data, which is evident from the panel I/O settings in Mosaic. Panel is available by clicking on the icon 10 in the toolbar.

Struktura dat	Úplný zápis	Alias ⁴	Svorka	Abs./délka4	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
🗄 di : TCIB_CRC0003S_BTN 🛛 🗛	MI_CIB1_IN~ID1_IN~di			%R4/2	\$0000
🗄 🗄 stat : TCIB_CRC0003S_STAT 🗛	MI_CIB1_IN~ID1_IN~stat			%R6/1	\$00
—THERM : REAL 😽	MI_CIB1_IN~ID1_IN~THERM			%RF7	0
RH : REAL 😽	MI_CIB1_IN~ID1_IN~RH			%RF11	0
-AI : REAL	MI_CIB1_IN~ID1_IN~AI			%RF15	0
□ ID1_OUT : TMI_CIB1_ID1_OUT	MI_CIB1_OUT~ID1_OUT				
⊟-disp : TCIB_CRC0003S_DISP	MI_CIB1_OUT~ID1_OUT~disp				
±-cont ∶TCIB_CRC0003S_C0	MI_CIB1_OUT~ID1_OUT~disp~cont			%R19/0	\$00
—val1 : INT 📑	MI_CIB1_OUT~ID1_OUT~disp~val1			%RW20	0
— val2 : INT 📑	MI_CIB1_OUT~ID1_OUT~disp~val2			%RW22	0
—symbols : WORD 📑	MI_CIB1_OUT~ID1_OUT~disp~symbols			%RW24	
—units1 : BYTE 📑	MI_CIB1_OUT~ID1_OUT~disp~units1			%R26	0
—units2 : BYTE 📑	MI_CIB1_OUT~ID1_OUT~disp~units2			%R27	0
-light : BYTE 📑	MI_CIB1_OUT~ID1_OUT~disp~light			%R28	0


Fig. 3.73

The structure of the transmitted data

Input data

DI

DI		STAT	THERM	RH	Al1
- butt	on/hinany inn	uts status (16	6x type bool)		
- Dull	on/onary mp	uis siaius (n	ox type bool)		
	DI1	BUT3	BUT2	BUT1	1
Bit	.3	.2	.1	.0	
	CLICK_DI1	CLICK_BUT	T3 CLICK_BU	JT2 CLICK_B	SUT1
Bit	7	.6	F	1	

blink1x - blinking of individual digits of the value VAL1

*blink*2*x* - blinking of individual digits of the value VAL2

0x00 - does not flash 0x01 - flashing lower 2 digits (Low) 0x10 - flashing higher 2 digits (High) 0x11 - flashing all digits Flashing is in 500ms period.

DISP.VAL1 - primary value is displayed in the range -9999 ÷ +9999 (1x type int)

DISP.VAL2 - secondary value is displayed in the range -9999 ÷ +9999 (1x type int)

DISP.SYMBOLS - display symbols(1x type word)

- S1 display symbol / mode S1
- S2 display symbol / mode S2
- S3 display symbol / mode S3
- S4 display symbol / mode S4

The specific form of the symbol of displayed/selected mode is given by *display format*, see chapter *Configuration*.

	Type1	Type2	
	S1÷S4	S1,S3	S2,S4
0x00			
0x01	D, L	<u> </u>	OFF
0x02	\odot	X	Heat
0x03	0		Cool
0x04	Ģ		Auto
0x05			Fan
0x06	н¥		Dry
0x07			On
0x08	*		Cycle
0x09	Ĵ		High
0x0A	ß		Medium
0x0B	Ą		Low
0x0C	X		Тор
0x0D	<u> </u>		
0x0E	\cap		
0x0F			

DISP.UNITS1 - units and display format of primary value (1x type usint) *DISP.UNITS2* - units and display format of secondary value (1x type usint)

	FORM		UNIT					
Bit	.7	.6	.5	.4	.3	.2	.1	.0
FO	DRM	0x01 - 0x10 - 0x11 - - unit disp 0x00 - 0x01 - 0x02 - 0x03 - 0x04 - 0x05 - 0x06 -	with a c without with a c olayed °C °F % rH kW ppm	lecimal p a decim olon, tim	al point ne forma	(xxxx) it (xx:xx)		

DISP.LIGHT - display backlight (1x type usint)

	BLIN	K			VAL			
Bit	.7	.6	.5	.4	.3	.2	.1	.0
BL VA	.INK	- flashing 0 - doe 1 - flas - level of e	es not fla sh	ish	·	,		

3.29. C-RI-0401S

The module contains 1 output of IR (infrared) transmitter, 1 input of IR receiver demodulator, 1 input for light intensity sensor (BPW21), one output LED indicator and 2 universal inputs. Each of the universal inputs can be used by either the potential-free binary input or the analog input for connecting a resistance temperature sensor.

The mechanical design of the module is designed to be mounted under cover of device (ingress protection of the module IP10B). Signals of the module are available on ribbon cable. signalling green RUN LED is accessible from the side of module opposite to ribbon cable. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

For sensors Pt1000, Ni1000, KTY81-121, and sensor TC and TZ (thermistor NTC12k) module performs the conversion and linearization of measured values directly to temperature. For other types of resistors (in range 0 to 160 k Ω) the conversion to the temperature has to be done in user program in CPU (module gives the value in k Ω , with resolution 10 Ω).

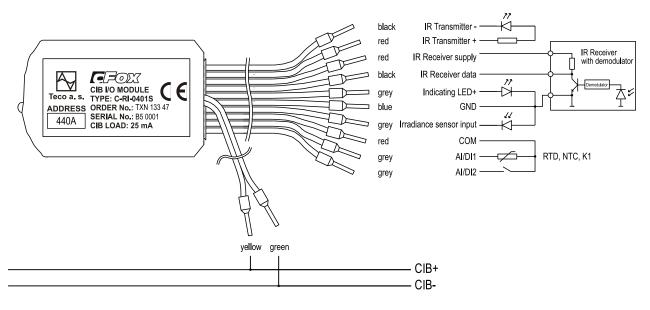


Fig. 3. 74 View and connection C-RI-0401S

Tab. 3.29 Basic parameters C-RI-0401S

Universal DI/AI inputs					
Quantity	2				
Optional types of inputs	Binary, Pt1000, Ni1000, NTC12k Ω , KTY81-121, resistance 160k Ω				
Binary input	NO contact (0/1) (Normally Open)				
Pt1000	–90 ÷ +320 °C				
Ni1000	–60 ÷ +200 °C				
NTC 12kΩ	–40 ÷ +125 °C				
KTY81-121	–55 ÷ +125 °C				
Resistance input	0 ÷ 160kΩ				
Resolution	0.1 °C / 10Ω				
Accuracy	2 %				

Power supply					
Power supply and	24 V (27 V) from the				
communication	CIB				
Max. power	25 mA				
consumption					
Dimensions and weight					
Dimensions	55 × 32 × 13mm				
Weight	8g				

Input of light intensity sensor						
Quantity, type of sensor	1, photodiode BPW21					
Range of measurement	0 ÷ 50000 lx					
Accuracy of	5 %					
measurement						
Input of IR receiver demodulator						
Quantity	1					
Power supply for	3.3 V					
demodulator						
Demodulator pilot	36 kHz					
frequency						
Output of IR transmitter						
Quantity	1					
Power supply of	3.3 V					
transmitter						
Type of IR transmitter	IR LED ($I_{FMAX} = 100mA$)					
	+ resistor according to I _F					
	(e.g. for IR LED $U_F = 1.2V$,					
	$I_F = 20 \text{mA} -> \text{R} = 100 \Omega$)					
Operating and installation						
Operating temperature	-10 ÷ +55 °C					
Storage temperature	-25 ÷ +70 °C					
IP degree of protection	IP10B					
acc. IEC 529						
Operating position	Arbitrary					
Type of operation	Continuous					
Installation	under cover of device					
Connecting	Ribbon cable 0.15mm ² (CIB)					
	removable connectors with					
	separated wires 0.14 mm ² /10cm					

3.29.1. Configuration

C-RI-04015			×
Nastavení analogových vstuj	ΰ		
AI1 : Typ vstupu	Pt1000 W100 = 1,385	Filtrace vstupu	0,0 🚖
AI2 : Typ vstupu	Pt1000 W100 = 1,385	Filtrace vstupu	0,0 🚖
		🖌 ок	🗶 Zrušit

Fig. 3.75 Module configuration

The input terminals DI/AIx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. *2.1 Master configuration*, check the box *Show units, devices*

Type of input

Choosing the type of analog input:

Pt1000, W₁₀₀ = 1,385, -90/+320°C Pt1000, W₁₀₀ = 1,391, -90/+320°C Ni1000, W₁₀₀ = 1,617, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160k Ω)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

- x the current value of the analog input
- y_t output
- y_{t-1} recent output
- -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

3.29.2. The structure of the transmitted data

Module contains 6 devices in total:

- device 1,	input,	1*STAT	(status AIx,	light intensity
sensor)				
- device 2,	input,	2*AI (thermome	ters)	
- device 3,	input,	1*AI (light in	tensity sense	or)
- device 4,	input,	2*DI		
- device 5,	input/output,	, 1*IRI/IRO (i	nfrared recei	ver/transmitter)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is accessible by pressing the icon 10 in toolbar.

Struktura dat	Úplný zápis 🌗	Alias	Svorka ⁴	Abs./délka¶	Hodnota
□ ID1_IN : TMI0_CIB1_ID1_IN	MI0_CIB1_IN~ID1_IN				
🕀 – STAT : TCIB_RI_STAT 🛛 🗛	MI0_CIB1_IN~ID1_IN~STAT			%R212/1	\$00
📴 THERM : TCIB_RI_THERM 🗛	MI0_CIB1_IN~ID1_IN~THERM			%R213/8	
—light : UINT 🛛 🗛	MI0_CIB1_IN~ID1_IN~light			%RW221	\$0000
🕀 -DI : TCIB_DI2 🗛	MI0_CIB1_IN~ID1_IN~DI			%R223/1	\$00
⊟-IRin : TCIB_IRin	MI0_CIB1_IN~ID1_IN~IRin				
🗄 🗄 🗄 🗄 🕂 🕂 🖶 🖶	MI0_CIB1_IN~ID1_IN~IRin~stat			%R224 / 0	\$00
HR_code : UINT 🗛	MI0_CIB1_IN~ID1_IN~IRin~IR_code			%RW225	0
DILOUT : TMI0_CIB1_ID1_OUT	MIO_CIB1_OUT~ID1_OUT				
⊟-IRout : TCIB_IRout	MI0_CIB1_OUT~ID1_OUT~IRout				
	MI0_CIB1_OUT~ID1_OUT~IRout~cont			%R227 / 0	\$00
IR_code : UINT	MI0_CIB1_OUT~ID1_OUT~IRout~IR_coo			%RW228	0

Fig. 3.76 The structure of the transmitted data

Input data

S		RM	light	DI		Irin	
STAT	- status byte of a	nalog inpi	its (8x type b	ool)			
0////							
	Bit .7		LDI OUFI .5 .4	VLD2 .3	OUF2 .2	VLD1 .1	OUF1 .0
THERM.Alx	 OUF1 - overflow / underflow of range of analog input Al1 VLD1 - Al1 analog input reading validity OUF2 - overflow / underflow of range of analog input Al2 VLD2 - Al2 analog input reading validity OUF1 - overflow/underflow of range of light intensity sensor VLD1 - validity of the reading of input with the light intensity sensor 						
Light	- value of the ligh	,	(1x type uin	+) [l√]			
-	C			ייז ניא]			
DI	- status of binary	inputs (8)	(type bool)				
	- Bit .7	- .6	 .5 .4	.3	- .2	Dl2 .1	DI1 .0
	DI1 DI2		rrent status c rrent status c				
lrin.stat	- status byte of IF	R receiver	(8x type boo	I)			
	Receive_End- receiving of IR packet finishedErr_Receive- IR packet reception error (unknown, unlearned packet)Transmit_End- sending IR packet is completeLearn_End- Learning IR packet is completeErr_Learn- error when learning IR packetClear_End- deleting learned IR packet is completeErrMode- invalid mode (in <i>Ircont.out</i>)						
Irin.IR_code	- index of received IR packet (1x type uint)						

Output data

Irout

Irout.cont - control byte of IR transmitter (8x type bool)

Receive_ON	 Activation the IR receiving
Transmit_ON	- Activation the IR transmitting

Learn_ON Learn_Mask	- Activation the IR learning mode - reserve
Clear	 Activation of IR deleting mode
LED_AUTO	 automatic flashing LED when receiving IR packet
	= 1 - 1x long flash in the successful IR reception
	- 3x short flashes during a failed IR reception
	= 0 - manual control of LED (bits LED_ON and
LED_Bli	ink)
LED_ON LED_Blink	 status of LED indicator, 0/1 = off / on flashing of LED (in 150ms raster, at LED_ON=1)

Irout.IR_code - index of transmitted IR packet (1x type uint)

3.29.3. Description of function IR receiver / transmitter

IR receiver and IR transmitter in module are designed to capture and generate IR signal from the IR remote controllers, using the control of different types of appliances (e.g. air conditioners). The module can handle any IR signal (packet) sent from the IR remote controller that works with a carrier frequency of 36kHz. The captured IR packet from the remote control can be learned/saved and consequently reproduced (transmitted). This makes it possible to replace the original manual control via IR remote control by automated control over C-RI-0401S module. The module allows you to save about. 100 different IR packets/commands.

IR learning procedure

Learning procedure is initiated by setting the index of learned packet to *Irout.IR_code* variable (packet index must not be 0 (0x0000) and/or 65535 (0xFFFF) - they are dedicated values!!!). Then the variable *Irout.cont.Learn_On* has to be set on 1 so the module turns to the receiving state and awaits the IR packet to be learned..

Successful reception and processing of learned packet is signalled by setting the variable *lrin.stat.Learn_End* = 1. In case of unsuccessful packet teaching cycle also the variable *lrin.stat.Err_Learn* = 1 is set and the learning procedure must be repeated.

Termination (reset) of the enrolment is done by setting the variable *lrout.cont.Learn_On* = 0, thus the flags *lrin.stat.Learn_End* and *lrin.stat.Err_Learn* are cleared in status byte.

Learning another IR packet is re-activated by setting the variable *Irout.cont.Learn_On* = 1. Learned IR packets are stored in the module and the ON / OFF power module.

IR receiving

In this mode, the module receives learned IR packets. Activation of IR reception is done by setting the variable *Irout.cont.Receive_On* = 1. The module goes into receiving mode and waits for coming IR packet.

Successful acceptation of learned packet is signalled by setting the variable *lrin.stat.Receive_End* = 1 and setting the index of the received packet in the variable *lrin.IR_code*. If the module accepts unknown packet (which is not taught in the module) also the variable is set *lrin.stat.Err_Receive* = 1 and variable *lrin.IR_code* = 0.

Termination (reset) of the receiving mode can be done by setting the variable *lrout.cont.Receive_On* = 0, which clear the flags *lrin.stat.Receive_End* and *lrin.stat.Err_Receive* in the status byte and variable *lrin.IR_code*. Receiving another IR packet is activated by setting the variable *lrout.cont.Receive_On* = 1.

IR transmitting

For transmitting of IR packet the index of the desired packet must be set first into the variable *Irout.IR_code*. Transmitting of the desired packet is started by setting the variable *Irout.cont.TransmitOn* = 1. End of transmitting the whole packet is indicated by setting variable *Irin.stat.Transmit_End* = 1.

Termination (reset) of the transmitting mode can be done by setting the variable *lrout.cont.TransmitOn* = 0, which clear the flag *lrin.stat.Transmit_End*. Transmitting of another IR packet is activated by setting the variable *lrout.cont.TransmitOn* = 1.

IR clearing

To delete a learned IR packet from the module the index of deleting packet has to be set to variable *Irout.IR_code* and then the variable *Irout.cont.Clear* = 1 is set. Clearing the IR packet is signaled by setting the variable *Irin.stat.Clear_End* = 1. If you want to erase all learned IR packets at the same time, it is possible to set the value 65535 (0xFFFF) into a variable *Irout.IR_code*.

Termination (reset) of deleting is done by setting the variable *Irout.cont.Clear* = 0, which clear the flag *Irin.stat.Clear_End* from the status byte. Next deleting can be done by re-setting the variable *Irout.cont.Clear* = 1.

It is not necessary to delete the original learned IR packet, the index is rewrited by the new learned IR packet.

3.30. C-WG-0503S

The module is designed to connect readers of contactless RFID identifiers that communicate via Wiegand interface (e.g. Aktion AXR-100 from EFG CZ spol. Ltd., or Samsung SSA-R1001, SSA-R2000V or others). In addition to the signal from the card readers the module also contains one binary input for potential-free contacts, two universal inputs and 3 digital outputs (OC).

Each of the universal inputs can be used either as the binary input for potential free contacts or as a balanced input for alarm detectors (security systems) or as the analog input for connecting a resistance or temperature sensor. Inputs for the reader can be reconfigured to function of 2 binary inputs. The module can therefore operate either in a configuration Wiegand + 1*DI + 2*AI/DI + 3*DO or in configuration 3*DI + 2*AI/DI + 3*DO.

The mechanical design of the module is designed to be mounted under cover of device (ingress protection of the module IP10B). Signals of module are led out by removable connectors with separated wires.

The green LED indicating the RUN mode is available from the side of the module opposite to the connectors. Connecting on the CIB bus (connection to the power supply) is indicated by permanent lit of the RUN LED. Module operation on the CIB is indicated by regular flashing of the RUN LED.

For sensors Pt1000, Ni1000, KTY81-121, and sensor TC and TZ (thermistor NTC12k) module performs the conversion and linearization of measured values directly to temperature. For other types of resistors (in range 0 to 160 k Ω) the conversion to the temperature has to be done in user program in CPU (module gives the value in k Ω , with resolution 10 Ω).

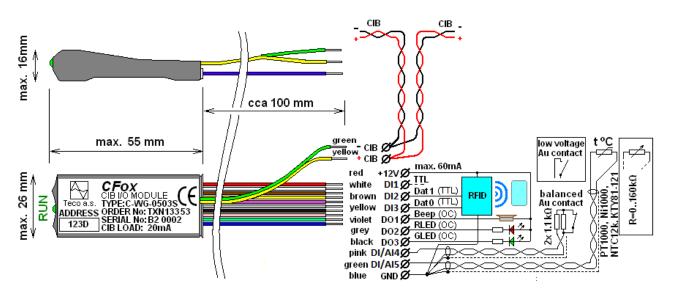


Fig. 3. 77 View and connection C-WG-0503S

Tab. 3.30 Basic parameters C-WG-0503S

Wiegand inputs, Binary inputs (DI1,DI2,DI3)					
Quantity	3				
Туре	TTL 5V				
Pull -up resistance	3.9kΩ				
Galvanic isolation	No				
Wiegand interface	26/34/42 bit (3/4/5 B)				
- Pulse width / delay	typ. 60÷100us / 1÷2ms				
Binary outputs (DO1,D	02,DO3)				
Quantity	3				
Туре	Open collector NPN				
Switched voltage	max. 30V				
Switched current	max. 30mA				
Galvanic isolation	No				

Power supply	
Power supply and	24 V (27 V) from the
communication	CIB
Nominal power	20 mA
consumption	
Max. power	85 mA
consumption	
Operating and installa	tion conditions
Operating temperature	0 ÷ +70 °C
Storage temperature	-25 ÷ +85 °C
IP degree of protection	IP10B
acc. IEC 529	
Overvoltage category	II (according to EN
	60664)
Degree of pollution	1 (according to EN
	60664)
Operating position	Arbitrary
Type of operation	Continuous

Universal inputs DI/AI/E	ZS (DI/AI4, DI/AI5)
Quantity	2
Optional types of	Binary, balanced, 1x2k2,
universal inputs	2x1k1, Pt1000, Ni1000,
	NTC12kΩ, KTY81-121,
	resistance 160kΩ
Threshold level of DI	0>1.5kΩ, 1<0.5kΩ
Internal voltage DI	3.3V
Internal resistance of DI	2.2kΩ
Resolution AI	0.1 °C / 10Ω
Accuracy AI	0,5 %
Galvanic isolation	No

Power output	
Output voltage	12V DC
Output current	max. 60mA
The period of data refre	sh
Analog inputs	typically 5s
Other inputs	typically 160ms
Dimensions and weight	
Dimensions	max. 55 × 26 × 16mm
Weight	7 g
Installation	
Туре	under cover of device
Connecting	Ribbon cable 0.15mm ² (CIB) removable connectors with separated wires 0.14 mm ² /10cm

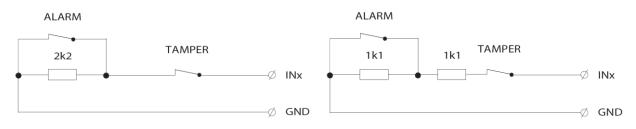


Fig. 3. 78 Simply balanced input for security detectors Fig. 3. 79 Double-balanced input for security detectors

3.30.1. Configuration

C-	-WG-05035				×
	Nastavení analogových vstupů				
	Typ vstupu AI4	Pt1000 W100 = 1,385	•	Filtrace vstupu AI4	0,0 🚖
	Typ vstupu AI5	Pt1000 W100 = 1,385	•	Filtrace vstupu AI5	0,0 🚖
	Nastavení binárních vstupů Vyvážený vstup (zabezpe Vyvážený vstup (zabezpe			p má dvojité vyvážení DI4 p má dvojité vyvážení DI5	
	Typ kódování (• Wiegand 26/34/42 bit		C Transp	parent 40 bit	
				🗸 ок	🗶 Zrušit

Fig. 3.80 Module configuration

Some inputs, input terminals are **shared** for more functions of module. Wiegand data inputs are shared with DI, universal inputs are shared for DI/AI. If the inputs are configured to connect data lines of Wiegand reader **it is not possible** to use them **in the same time** as DI. Likewise, universal input configured as AI **cannot be used in the same time** as DI. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. <u>2.1</u> *Master configuration*, check the box *Show units, devices*.

Type of encoding

Primary the module allows processing codes of protocol of Wiegand 26, Wiegand 34 or 42 bit Wiegand. The module automatically detects the type of protocol and checks the frames (security) and transmits only "pure" code identifier to the user. Sekondary the module can be switched into so called "transparent" mode, where the "rough" identifier code is forwarded to the user (without framework and security checking) in lengths up to 5 flats (longer code is cut off). Required type of encoding is set by checking the appropriate item.

Balanced input

By checking the item, the respective input will be evaluated as a simple balanced binary alarm input. If the item is not checked, the respective input evaluated as a normal binary input (on/off).

Double balanced input

By checking the item, respective input will be evaluated as a double balanced binary alarm input. If the item is not checked and the input is configured for security systems (balanced input), the respective input evaluated as alarm input with a simple balance.

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12kΩ at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV160k (0 ÷ 160kΩ)

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

х	- the current value of the analog input
Уt	- output
Уt-1	- recent output
7	-time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Blocking of DO

It can be set for binary outputs DOx if they should stay in their last state or they should be disconnected during transition into HALT mode.

3.30.1. The structure of the transmitted data

Module contains 5 devices in total:

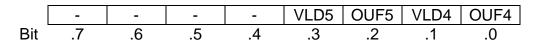
-	device	1,	input/output,	1*CODE/3*DO	(reader/indication)
-	device	2,	input,	1*STAT	(status AIx)
-	device	З,	input,	1*AI	(input AI4)
-	device	4,	input,	1*AI	(input AI5)
-	device	5,	input,	3*DI+2*DI/EZS	

The devices are incorporated into the structure of the transmitted data, which is evident from window *I/O setting* in the Mosaic. Panel is available after pressing icon **1** in toolbar.

CIB UNITS, MODULES

Struktura dat	Úplný zápis	Alias	Svorka	Abs./délka	Hodnota
DI_IN : TMI0_CIB1_ID1_IN	MIO_CIB1_IN~ID1_IN				
CODE : TCIB_CWG0503S_CODE	MI0_CIB1_IN~ID1_IN~CODE				
-STAT : USINT	MI0_CIB1_IN~ID1_IN~CODE~STAT			%R144	0
VAL 🗄 : ARBAY [04] OF USINT 🛓	MI0_CIB1_IN~ID1_IN~CODE~VAL			%R145	0, 0, 0, 0, 0
STAT : TCIB_CWG0503S_STAT	MI0_CIB1_IN~ID1_IN~STAT				\$00
-OUF4 : BOOL	MI0_CIB1_IN~ID1_IN~STAT~OUF4			%R150.0	0
-VLD4 : BOOL	MI0_CIB1_IN~ID1_IN~STAT~VLD4			%R150.1	0
-OUF5 : BOOL	MI0_CIB1_IN~ID1_IN~STAT~OUF5			%R150.2	0
-VLD5 : BOOL	MI0_CIB1_IN~ID1_IN~STAT~VLD5			%R150.3	0
-AI4 : REAL	MI0_CIB1_IN~ID1_IN~AI4			%RF151	0
-AI5 : REAL	MI0_CIB1_IN~ID1_IN~AI5			%RF155	0
□-DI : TCIB_CWG0503S_DI	MI0_CIB1_IN~ID1_IN~DI				
—DI1 : BOOL	MI0_CIB1_IN~ID1_IN~DI~DI1			%R159.0	0
— D12 : BOOL	MI0_CIB1_IN~ID1_IN~DI~DI2			%R159.1	0
— DI3 : BOOL	MI0_CIB1_IN~ID1_IN~DI~DI3			%R159.2	0
— DI4 : BOOL	MI0_CIB1_IN~ID1_IN~DI~DI4			%R159.3	0
— DI5 : BOOL	MI0_CIB1_IN~ID1_IN~DI~DI5			%R159.4	0
-TAMPER4 : BOOL	MI0_CIB1_IN~ID1_IN~DI~TAMPER4			%R159.5	0
TAMPER5 : BOOL	MI0_CIB1_IN~ID1_IN~DI~TAMPER5			%R159.6	0
□ ID1_OUT : TMI0_CIB1_ID1_OUT	MIO_CIB1_OUT~ID1_OUT				\$00
Ė-DOs ∶TCIB_DO3	MI0_CIB1_OUT~ID1_OUT~DOs				\$00
-DO1 : BOOL	MIO_CIB1_OUT~ID1_OUT~DOs~DO1			%R160.0	0
-DO2 : BOOL	MI0_CIB1_OUT~ID1_OUT~D0s~D02			%R160.1	0
- DO3 : BOOL	MI0_CIB1_OUT~ID1_OUT~D0s~D03			%R160.2	0

Fig. 3.81


The structure of the transmitted data

Input data

CODE STAT AI4 AI5 DI

CODE.STAT - status byte of received identification code (1x type usint)

- = 1 code in format transparent 40-bit was accepted
- = 3 code in format Wiegand 26 was accepted
- = 4 code in format Wiegand 34 was accepted
- = 5 code in format Wiegand 42 was accepted
- CODE.VAL
 received identification code (5x type usint)
 For Wiegand format "clean" identifier code (without check bits) is passed.
 For transparent format full received identifier code is passed (including assurance of bits) with the maximum length of 40 bits (long codes are cut).
- *STAT* status byte of analog inputs (8x type bool)

OUFx	- overflow / underflow of range of analog input Alx
VLDx	 validity of reading of analog input Alx

- Al4 value of analog input Al4 (1x type real) [°C],[k Ω]
- Al5 value of analog input Al5 (1x type real) [°C],[k Ω]

The value of temperature sensor is passed in °C (with resolution of 0.1°C), the value of general resistance in range $160k\Omega$ is transferred in $k\Omega$ (with resolution of 10Ω).

DI - status of binary inputs and tamper (8x type bool)

	-	TAMPER5	TAMPER4	DI5	DI4	DI3	DI2	DI1
Bit	.7	.6	.5	.4	.3	.2	.1	.0

DIx - Current status of binary input DIx / alarm input x TAMPERx - "tamper" status of alarm input x

Output data

DOs

DOs

- status of binary outputs (8x type bool)

_								
	-	-	-	-	-	DO3	DO2	DO1
Bit	.7	.6	.5	.4	.3	.2	.1	.0
DC)1 - '	alue of	binary ou	Itput DO	1 (Wiega	and - buz	zzer)	
DC	2 - 9	alue of	binary ou	Itput DO	2 (Wiega	and - LE	D) [′]	
DC			binary ou					

3.31. C-WS-0200R

Wall switch module contains two short stroke buttons. The module can also connect 2 external temperature sensor to measure the ambient or any other temperature. Module is designed for Time and Element designs of ABB production. For actual offer of designs see the catalogue of Teco

The module is mechanically adapted for mounting on a standard installation flush box with a pitch of 60 mm fixing screws. Connection terminals for connection to the CIB bus and for external temperature sensors on the back side of the module.

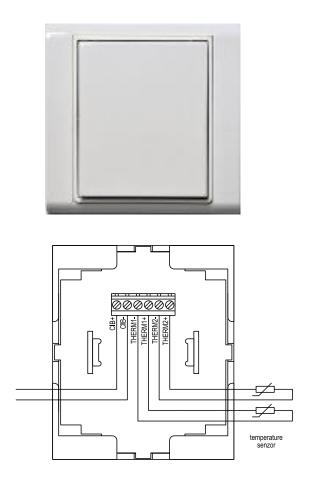


Fig. 3. 82 View and connection example

2 short stroke button 2 Thermistor NTC 12k 0 ÷ +90 °C 1 °C resistance input 0 ÷ 100kΩ 24 V (27 V) from the CIB
2 Thermistor NTC 12k 0 ÷ +90 °C 1 °C resistance input 0 ÷ 100kΩ
Thermistor NTC 12k 0 ÷ +90 °C 1 °C resistance input 0 ÷ 100kΩ
Thermistor NTC 12k 0 ÷ +90 °C 1 °C resistance input 0 ÷ 100kΩ
0 ÷ +90 °C 1 °C resistance input 0 ÷ 100kΩ
1 °C resistance input 0 ÷ 100kΩ
resistance input 0 ÷ 100k Ω
24 V (27 V) from the CIB
24 V (27 V) from the CIB
20 mA
No
88 × 81 × 21mm
60 g
on conditions
-10 ÷ +55 °C
-25 ÷ +70 °C
IP10B
1
Vertical
Continuous
Into the flush box
screw type terminals
max. 1,5 mm ²

Tab. 3.31 Basic parameters C-WS-0200R

 Dimensions according the specifics of used design..

3.31.1. Configuration

C-W5-0200R			X
Offset teploty (korekce +-)	Senzor type		
THERM1 : Offset teploty (korekce +-) 0,0 🚖 °C	Typ snímače	NTC-12k	•
THERM2 : Offset teploty (korekce +-) 0,0 🚔 °C	Typ snímače	OV 100k	•
		ОК	🗙 Zrušit

Fig. 3.83 Module configuration

Temperature offset

Correction offset of thermometer, which will be added on the measured temperature.

Type of sensor

Choosing type of temperature sensor: NTC 12k (negative thermistor, $12k\Omega$ at 25° C), 0/+90°C - OV100k (0 ÷ 100kΩ)

3.31.1. The structure of the transmitted data

Module contains 4 devices in total:

- device 1, input,	1*STAT	(status of termometer)
- device 2, input,	1*AI	(thermometer 1)
 device 3, input, 	1*AI	(thermometer 2)
- device 4, input,	2*DI	(buttons)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is available after pressing icon 10 in toolbar.

Struktura dat	Úplný zápis	Alias	Svorka ⁴ Abs./délka	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN			
⊨- STAT : TCIB_AI2_STAT	MI_CIB1_IN~ID1_IN~STAT			\$00
-OUF1 : BOOL	MI_CIB1_IN~ID1_IN~STAT~OUF1		%R4.0	0
-VLD1 : BOOL	MI_CIB1_IN~ID1_IN~STAT~VLD1		%R4.1	0
-OUF2 : BOOL	MI_CIB1_IN~ID1_IN~STAT~OUF2		%R4.2	0
-VLD2 : BOOL	MI_CIB1_IN~ID1_IN~STAT~VLD2		%R4.3	0
-THERM1 : REAL	MI_CIB1_IN~ID1_IN~THERM1		%RF5	0
-THERM2 : REAL	MI_CIB1_IN~ID1_IN~THERM2		%RF9	0
BTN : TCIB_WSB_BTN2	MI_CIB1_IN~ID1_IN~BTN			\$00
UP1 : BOOL	MI_CIB1_IN~ID1_IN~BTN~UP1		%R13.0	0
DOWN1 : BOOL	MI_CIB1_IN~ID1_IN~BTN~DOWN1		%R13.1	0

Fig. 3.84 The structure of the transmitted data

Input data

STAT	THERM1	THERM2	BTN
------	--------	--------	-----

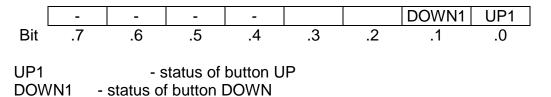
STAT - status byte of analog inputs (8x type bool)

	-	-	-	-	VLD2	OUF2	VLD1	OUF1
Bit	.7	.6	.5	.4	.3	.2	.1	.0

OUF1 - overflow / underflow of range of temperature input 1

VLD1 - reading validity of temperature input 1

OUF2 - overflow / underflow of range of temperature input 2


VLD2 - reading validity of temperature input 2

THERM1 - value of analog/temperature input (type real) [°C], $[k\Omega]$

THERM2 - value of analog/temperature input (type real) [°C],[k Ω]

The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range $100k\Omega$ is transferred in $k\Omega$ (with resolution of 10Ω).

BTN - status of buttons (8x type bool)

3.32. C-WS-0400R

Wall switch module contains 4 short stroke buttons. The module can also connect 2 external temperature sensor to measure the ambient or any other temperature. Module is designed for Time and Element designs of ABB production. For actual offer of designs see the catalogue of Teco

The module is mechanically adapted for mounting on a standard installation flush box with a pitch of 60 mm fixing screws. Connection terminals for connection to the CIB bus and for external temperature sensors on the back side of the module.

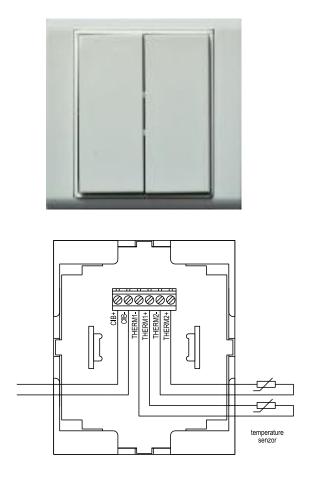


Fig. 3. 85 View and connection example

Binary inputs				
Quantity	4			
Туре	short stroke button			
Temperature inputs				
Quantity	2			
External sensor type	thermistor NTC 12kΩ(TC,TZ)			
Range	0 ÷ +90 °C			
Accuracy	1 °C			
External sensor type	resistance input 0 ÷ 100kΩ			
Power supply				
Power supply and communication	24 V (27 V) from the CIB			
Nominal power	20 mA			
consumption				
Galvanic isolation	No			
Dimensions and weight				
Dimensions ¹⁾	88 × 81 × 21mm			
Weight	60 g			
Operating and installati	on conditions			
Operating temperature	-10 ÷ +55 °C			
Storage temperature	-25 ÷ +70 °C			
IP degree of protection acc. IEC 529	IP10B			
Degree of pollution EN 60664	1			
Operating position	Vertical			
Type of operation	Continuous			
Installation	Into the flush box			
Connecting	screw type terminals			
Cross-section of wires	max. 1,5 mm ²			

Tab. 3.32 Basic parameters C-WS-0400R

1) Dimensions according the specifics of used design..

3.32.1. Configuration

C-WS-0400R			×
Offset teploty (korekce +-)	Senzor type		
THERM1 : Offset teploty (korekce +-) 0,0 🚔 °C	Typ snímače	NTC-12k	-
THERM2 : Offset teploty (korekce +-) 0,0 🔶 °C	Typ snímače	OV 100k	•
		ОК	🗶 Zrušit

Fig. 3.86 Module configuration

Temperature offset

Correction offset of thermometer, which will be added on the measured temperature.

Type of sensor

Choosing type of temperature sensor: NTC 12k (negative thermistor, $12k\Omega$ at 25° C), 0/+90°C - OV100k (0 ÷ 100kΩ)

3.32.2. The structure of the transmitted data

Module contains 4 devices in total:

- device 1, input,	1*STAT	(status of termometer)
- device 2, input,	1*AI	(thermometer 1)
- device 3, input,	1*AI	(thermometer 2)
- device 4, input,	4*DI	(buttons)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is available after pressing icon 10 in toolbar.

Struktura dat	Úplný zápis	Alias	Svorka ⁴	Abs./délka¶	Hodnota
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
STAT : TCIB_AI2_STAT	MI_CIB1_IN~ID1_IN~STAT				\$00
—OUF1 : BOOL 🗕	MI_CIB1_IN~ID1_IN~STAT~OUF1			%R4.0	0
-VLD1 : BOOL 🎍	MI_CIB1_IN~ID1_IN~STAT~VLD1			%R4.1	0
—OUF2 : BOOL 🗕	MI_CIB1_IN~ID1_IN~STAT~OUF2			%R4.2	0
-VLD2 : BOOL 🗕	MI_CIB1_IN~ID1_IN~STAT~VLD2			%R4.3	0
	MI_CIB1_IN~ID1_IN~THERM1			%RF5	0
—THERM2 : REAL 🗕	MI_CIB1_IN~ID1_IN~THERM2			%RF9	0
BTN : TCIB_WSB_BTN4	MI_CIB1_IN~ID1_IN~BTN				\$00
—UP1 : BOOL 🗕	MI_CIB1_IN~ID1_IN~BTN~UP1			%R13.0	0
–DOWN1 : BOOL 🗕	MI_CIB1_IN~ID1_IN~BTN~DOWN1			%R13.1	0
—UP2 : BOOL 🗕	MI_CIB1_IN~ID1_IN~BTN~UP2			%R13.2	0
DOWN2 : BOOL	MI_CIB1_IN~ID1_IN~BTN~DOWN2			%R13.3	0

Fig. 3.87 The structure of the transmitted data

Input data

[STAT	THE	RM1	THE	RM2	BT	N		
STAT	- status	- status byte of analog inputs (8x type bool)							
		-	-	-	-	VLD2	OUF2	VLD1	OUF1
	Bit	.7	.6	.5	.4	.3	.2	.1	.0
	OUF1 - overflow / underflow of range of temperature input 1 VLD1 - reading validity of temperature input 1 OUF2 - overflow / underflow of range of temperature input 2 VLD2 - reading validity of temperature input 2								
THERN	/1 - value	 value of analog/temperature input (type real) [°C],[kΩ] 							
THERM	/2 - value	- value of analog/temperature input (type real) [°C],[kΩ]							
	0.1°C	The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range 100k Ω is transferred in k Ω (with resolution of 10 Ω).							
BTN	- status	- status of buttons (8x type bool)							
	Г	-	-	-	-	DOWN2	2 UP2	DOWN	1 UP1
	Bit	.7	.6	.5	.4	.3	.2	.1	.0
	UP2	DOWN1 - status of button DOWN1							

.

3.33. C-WS-0200R-Logus

Wall switch module contains two short stroke buttons, 2 LED indicators and internal thermometr. The module can also connect 2 external temperature sensor to measure the ambient or any other temperature. The module also includes 2 universal DI/AI inputs that can be configured for connection another switching buttons or to connect other analog sensors. The module is designed in a design you LOGUS.

The module is mechanically adapted for mounting on a standard installation flush box with a pitch of 60 mm fixing screws. Connection terminals for connection to the CIB bus and for external temperature sensors on the back side of the module.

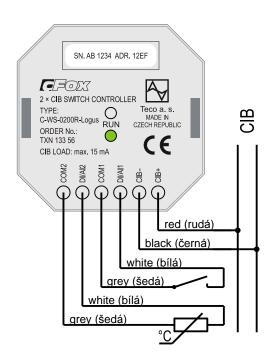


Fig. 3. 88 View and connection example

Tab. 3.33 Basic parameters C-WS-0200R-Logus

Buttons	C-WS-0200R-Logus
	0
Quantity	2
Туре	short stroke button
LED indicators	
Quantity	2 + 1
Colour	1x red, 1x green
	+ 1x green RUN
Internal thermometer	
Sensor type	thermistor NTC 12kΩ
Range	-10 ÷ +55 °C
Accuracy	± 1°C
Temperature settling	150 minutes
time	
Universal DI/AI inputs	
Quantity	2
Optional types of inputs	Binary, Pt1000, Ni1000,
	NTC12kΩ, KTY81-121,
	resistance 100k Ω , voltage
	input
Binary input	NO potential-free contact
Pt1000	–90 ÷ +320 °C
Ni1000	–60 ÷ +200 °C
NTC 12kΩ	–40 ÷ +125 °C
KTY81-121	–55 ÷ +125 °C
Resistance input	0 ÷ 100kΩ
Voltage input	0 ÷ 2V
Accuracy	± 1°C
Period of refresh Al	typically 5s
Power supply	
Power supply and	24 V (27 V) from the CIB
communication	· · ·
Nominal power	15 mA
consumption	
Galvanic isolation	No
Dimensions and weight	
Dimensions	86 × 86 × 38mm
Weight	79 g
Operating and installati	on conditions
Operating temperature	-10 ÷ +55 °C
Storage temperature	-25 ÷ +70 °C
IP degree of protection	IP10B
acc. IEC 529	
Degree of pollution dle	1
EN 60664	
Operating position	Vertical
Type of operation	Continuous
Installation	Into the flush box
Connecting	wires 0.5mm^2 , 90 mm
Connecting	

3.33.1. Configuration

C-WS-0200R-Logus			×			
Nastavení binárních vstup Prodleva vyhodnocení dl						
Nastavení analogových vs		0,7 👤 s				
AI1 : Typ vstupu	Pt1000 W100 = 1,385	▼ Filtrace vstupu	0,0 🜲			
AI2 : Typ vstupu	Pt1000 W100 = 1,385	Filtrace vstupu	0,0			
Offset teploty (korekce +-) THERM : Offset teploty (korekce +-) 0,0 € °C						
		🗸 ок	🗶 Zrušit			

Fig. 3.89 Module configuration

The input terminals DI/Alx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. 2.1 Master configuration, check the box Show units, devices

Delay, evaluation of long press

For binary (momentary button) inputs module directly evaluate the short and long presses on each input. By entering values one can set a delay time after which the activation of digital input DI is signalled as the long press (PRESS). Activating the digital input for period shorter than the entered value will be signalled by as the short press (CLICK). Delay period (T_{press}) can be inserted in the range 0.1÷2.5s.

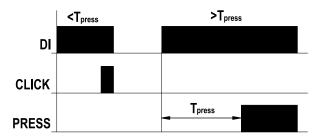


Fig. 3. 90 Evaluation of short/long press

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C KTY 81-121, -55/+125°C OV100k (0 ÷ 100k Ω) O ÷ 2V

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

- x the current value of the analog input
- y_t output
- y_{t-1} recent output
- -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Temperature offset

Correction offset of internal thermometer, which will be added on the measured temperature of internal thermometer.

3.33.2. The structure of the transmitted data

Module contains 5 devices in total:

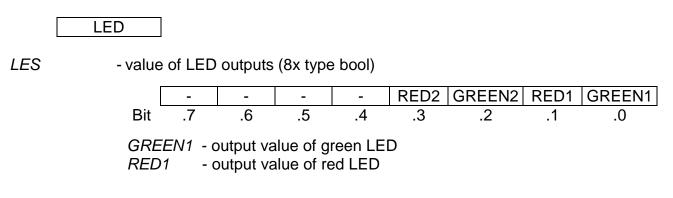
-	device	1,	input/out	put, 2	*BUTT+2*DI/2*LED
-	device	2,	input,	1*STAT	(status of analog inputs)
-	device	3,	input,	1*AI	(internal thermometer)
-	device	4,	input,	1*AI	(AI1)
-	device	5,	input,	1*AI	(AI2)

The devices are incorporated into the structure of the transmitted data, which is evident from window *I/O setting* in the Mosaic. Window is available after pressing icon **II** in toolbar.

CIB UNITS, MODULES

Struktura dat		Úplný zápis	Alias	Svorka	Abs./délka	Hodnota
ID1_IN : TMI_CIB1_ID1_IN		MI_CIB1_IN~ID1_IN				
DI : TCIB_CWS2LO_BTN		MI_CIB1_IN~ID1_IN~DI				
UP1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~UP1			%R4.0	0
-DOWN1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~DOWN1			%R4.1	0
-DI1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~DI1			%R4.4	0
	-	MI_CIB1_IN~ID1_IN~DI~DI2			%R4.5	0
-CLICK_UP1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_UP1			%R5.0	0
-CLICK_DOWN1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_DOWN1			%R5.1	0
-CLICK_DI1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_DI1			%R5.4	0
-CLICK_DI2 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_DI2			%R5.5	0
-PRESS_UP1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~PRESS_UP1			%R6.0	0
-PRESS_DOWN1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~PRESS_DOWN1			%R6.1	0
-PRESS_DI1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~PRESS_DI1			%R6.4	0
-PRESS_D12 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~PRESS_DI2			%R6.5	0
	-	MI_CIB1_IN~ID1_IN~STAT			%R7/1	\$00
-THERM : REAL	-	MI_CIB1_IN~ID1_IN~THERM			%RF8	0
AI1 : REAL	-	MI_CIB1_IN~ID1_IN~AI1			%RF12	0
AI2 : REAL	-	MI_CIB1_IN~ID1_IN~AI2			%RF16	0
DID1_OUT : TMI_CIB1_ID1_OUT		MI_CIB1_OUT~ID1_OUT				\$00
LED : TCIB_WSB_LED2		MI_CIB1_OUT~ID1_OUT~LED				\$00
GREEN1 : BOOL	(MI_CIB1_OUT~ID1_OUT~LED~GREEN1			%R20.0	0
RED1 : BOOL	(MI_CIB1_OUT~ID1_OUT~LED~RED1			%R20.1	0

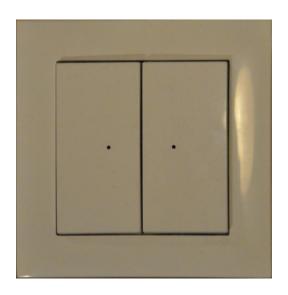
Fig. 3.91 The structure of the transmitted data


Input data

	DI	STAT	THERM	Al1	Al2]
DI		t status of ⁄pe bool)	the buttons and	binary inputs,	short and long pu	lses
STAT	Dix CLIC PRE	VNx - sta - cr CK_x - sh SSx - lo		OWNx the binary inpu . 1) on the bin g. 1) on the bi	it x ary input (button) nary input (button))
	Bit	7 .	- VLD2 O .6 .5	UF2 VLD1 .4 .3	OUF1 iVLD .2 .1	iOUF .0
	iVLD	 internal overflow 	 v / underflow of i thermometer reader v / underflow of reading of 	ading validity ange of analo	g input Alx	
iTHER	M - value o	of internal	thermometer (typ	pe real) [°C]		
Al1	- value o	of analog i	nput 1 (type real) [°C],[kΩ]		

Al2 - value of analog input 2 (type real) [°C],[kΩ]

The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range $100k\Omega$ is transferred in $k\Omega$ (with resolution of 10Ω).


Output data

3.34. C-WS-0400R-Logus

Wall switch module contains 4 short stroke buttons, 4 LED indicators and internal thermometr. The module also includes 2 universal DI/AI inputs that can be configured for connection another switching buttons or to connect other analog sensors. The module is designed in a design you LOGUS.

The module is mechanically adapted for mounting on a standard installation flush box with a pitch of 60 mm fixing screws. Connection terminals for connection to the CIB bus and for external temperature sensors on the back side of the module.

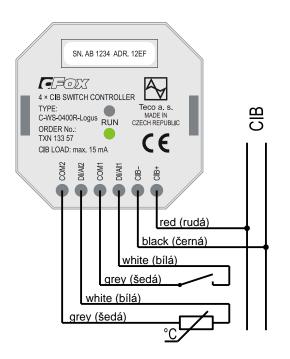


Fig. 3. 92 View and connection example

Buttons			
Quantity	4		
Туре	short stroke button		
LED indicators	Short Stroke Dutton		
Quantity	4 + 1		
Colour	4 + 1 2v rod 2v, groop		
Coloui	2x red, 2x green		
Internal thermometer	+ 1x green RUN		
	the ampieter NTC 1240		
Sensor type	thermistor NTC 12kΩ		
Range	-10 ÷ +55 °C		
Accuracy	± 1°C		
Temperature settling	150 minutes		
time			
Universal DI/AI inputs			
Quantity	2		
Optional types of inputs	Binary, Pt1000, Ni1000,		
	NTC12kΩ, KTY81-121,		
	resistance 100k Ω , voltage		
	input		
Binary input	NO (normaly open) potential-		
D (4000	free contact		
Pt1000	–90 ÷ +320 °C		
Ni1000	_60 ÷ +200 °C		
NTC 12kΩ	-40 ÷ +125 °C		
KTY81-121	–55 ÷ +125 °C		
Resistance input	0 ÷ 100kΩ		
Voltage input	0 ÷ 2V		
Accuracy	± 1°C		
Period of refresh Al	typically 5s		
Power supply			
Power supply and	24 V (27 V) from the CIB		
communication			
Nominal power	15 mA		
consumption			
Galvanic isolation	No		
Dimensions and weight			
Dimensions	86 × 86 × 38mm		
Weight	79 g		
Operating and installati	on conditions		
Operating temperature	-10 ÷ +55 °C		
Storage temperature	-25 ÷ +70 °C		
IP degree of protection	IP10B		
acc. IEC 529			
Degree of pollution dle	1		
EN 60664			
Operating position	Vertical		
Type of operation	Continuous		

Tab. 3

Into the flush box

wires 0.5mm², 90 mm

Installation

Connecting

3.34.1. Configuration

C-WS-0400R-Logus			×			
Nastavení binárních vstupů-						
Prodleva vyhodnocení dlou	uhého stisku	0,7 🚖 s				
Nastavení analogových vstu	ıpů					
AI1 : Typ vstupu	Pt1000 W100 = 1,385	Filtrace vstupu	0,0 🚖			
AI2 : Typ vstupu	Pt1000 W100 = 1,385	Filtrace vstupu	0,0 🚖			
Offset teploty (korekce +-) THERM : Offset teploty (korekce +-) 0,0 € °C						
		🗸 ок	🗶 Zrušit			

Fig. 3.93 Module configuration

The input terminals DI/AIx are **shared** for binary and analog inputs (for digital and analog equipment). As the input is configured as analog one, **it is not possible** use it as binary input **in the same time**. Depending on the configured input (as enabled devices) specific items of configuration dialog are enabled/disabled. Enabling devices see. chap. *2.1 Master configuration*, check the box *Show units, devices*

Delay, evaluation of long press

For binary (momentary button) inputs module directly evaluate the short and long presses on each input. By entering values one can set a delay time after which the activation of digital input DI is signalled as the long press (PRESS). Activating the digital input for period shorter than the entered value will be signalled by as the short press (CLICK). Delay period (T_{press}) can be inserted in the range 0.1÷2.5s.

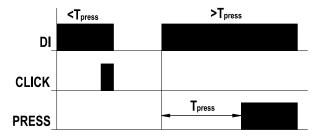


Fig. 3. 94 Evaluation of short/long press

Type of input

Choosing the type of analog input:

Pt1000, $W_{100} = 1,385$, -90/+320°C Pt1000, $W_{100} = 1,391$, -90/+320°C Ni1000, $W_{100} = 1,617$, -60/+200°C Ni1000, $W_{100} = 1,500$, -60/+200°C NTC 12k (negative thermistor, 12k Ω at 25°C), -40/+125°C

Input filtering

By specifying a non-zero value of the time constant, the 1st order digital filter is activated. The filter is given by

$$y_t = \frac{y_{t-1} \cdot \tau + x}{\tau + 1}$$

- x the current value of the analog input
- y_t output
- y_{t-1} recent output
- c -time constant of the 1st order filter (TAU(

Value of time constant is set in the range $0.1 \div 25.4$ and it represents a time constant in the range of 100 ms $\div 25.4$ s (value 255 is intended for service purposes).

Temperature offset

Correction offset of internal thermometer, which will be added on the measured temperature of internal thermometer.

3.34.2. The structure of the transmitted data

Module contains 5 devices in total:

-	device	1,	<pre>input/output,</pre>	4*BUTT+	2*DI/4*LED
-	device	2,	input,	1*STAT	(status of analog inputs)
-	device	З,	input,	1*AI	(internal thermometer)
-	device	4,	input,	1*AI	(AI1)
-	device	5,	input,	1*AI	(AI2)

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is available after pressing icon 10 in toolbar.

CIB UNITS, MODULES

Struktura dat		Úplný zápis	Alias	Svorka	Abs./délka [∢]	Hodnot
∃ID1_IN : TMI_CIB1_ID1_IN		MI_CIB1_IN~ID1_IN				
⊨DI : TCIB_CWS4LO_BTN		MI_CIB1_IN~ID1_IN~DI				
UP1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~UP1			%R4.0	0
-DOWN1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~DOWN1			%R4.1	0
UP2 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~UP2			%R4.2	0
-DOWN2 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~DOWN2			%R4.3	0
-DI1 : BOOL	F	MI_CIB1_IN~ID1_IN~DI~DI1			%R4.4	0
	P	MI_CIB1_IN~ID1_IN~DI~DI2			%R4.5	0
-CLICK_UP1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_UP1			%R5.0	0
-CLICK_DOWN1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_DOWN1			%R5.1	0
-CLICK_UP2 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_UP2			%R5.2	0
-CLICK_DOWN2 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_DOWN2			%R5.3	0
-CLICK_DI1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_DI1			%R5.4	0
-CLICK_D12 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~CLICK_DI2			%R5.5	0
-PRESS_UP1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~PRESS_UP1			%R6.0	0
-PRESS_DOWN1 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~PRESS_DOWN1			%R6.1	0
-PRESS_UP2 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~PRESS_UP2			%R6.2	0
-PRESS_DOWN2 : BOOL	-	MI_CIB1_IN~ID1_IN~DI~PRESS_DOWN2			%R6.3	0
-PRESS_DI1 : BOOL		MI_CIB1_IN~ID1_IN~DI~PRESS_DI1			%R6.4	0
PRESS_DI2 : BOOL		MI_CIB1_IN~ID1_IN~DI~PRESS_DI2			%R6.5	0
■-STAT : TCIB_CWSLo_STAT	-	MI_CIB1_IN~ID1_IN~STAT			%R7/1	\$00
-THERM : REAL	-	MI_CIB1_IN~ID1_IN~THERM			%RF8	0
AI1 : REAL	-	MI_CIB1_IN~ID1_IN~AI1			%RF12	0
AI2 : REAL	-	MI_CIB1_IN~ID1_IN~AI2			%RF16	0
ID1_OUT : TMI_CIB1_ID1_OUT		MI_CIB1_OUT~ID1_OUT				\$00
E-LED : TCIB_WSB_LED4		MI_CIB1_OUT~ID1_OUT~LED				\$00
-GREEN1 : BOOL	(MI_CIB1_OUT~ID1_OUT~LED~GREEN1			%R20.0	0
-RED1 : BOOL	(MI_CIB1_OUT~ID1_OUT~LED~RED1			%R20.1	0
-GREEN2 : BOOL	(MI_CIB1_OUT~ID1_OUT~LED~GREEN2			%R20.2	0
RED2 : BOOL		MI_CIB1_OUT~ID1_OUT~LED~RED2			%R20.3	0

Fig. 3.95 The structure of the transmitted data

Input data

	DI	STAT		THERM		Al1		Al2	
DI	 current status of the buttons and binary inputs, short and long pulses (24x type bool) 							ulses	
	DIX	WNx - : - CK_x -	status currer short j	of button of button nt status c pulse (to l pulse (into	DOWN on the bi og. 1) o	nary inp n the bin	ary inpu		
STAT	- status	byte of a	nalog	inputs (8	k type b	ool)			
	Γ	-	-	VLD2	OUF2	VLD1	OUF1	iVLD	iOUF
	Bit	.7	.6	.5	.4	.3	.2	.1	.0

<i>i</i> OUF	- overflow / un	derflow of internal	thermometer range
--------------	-----------------	---------------------	-------------------

- iVLD internal thermometer reading validity
- OUFx overflow / underflow of range of analog input Alx
- VLDx validity of reading of analog input Alx
- *iTHERM* value of internal thermometer (type real) [°C]
- All value of analog input 1 (type real) [°C],[k Ω]
- Al2 value of analog input 2 (type real) [°C], [kΩ]

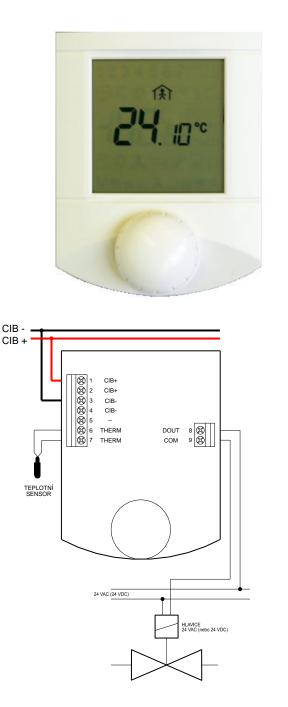
The value of temperature sensor is transferred in °C (with resolution of 0.1°C), the value of general resistance in range $100k\Omega$ is transferred in $k\Omega$ (with resolution of 10Ω).

Output data

LED

LES

- value of LED outputs (8x type bool)


	-	-	-	-	RED2	GREEN2	RED1	GREEN1
Bit	.7	.6	.5	.4	.3	.2	.1	.0

GREENx - output value of green LEDx *REDx* - output value of red LEDx

3.35. RCM2-1

Module is designed for office and residential interiors. It is intended for display and setting of desired temperature as a Control Room Manager. It Includes LCD to display one digital value and variety of graphic icons used in heating, ventilation, air conditioning. To navigate in the menu and edit values the module contain a rotary element with confirmation (pressing).

Internal temperature sensor is integrated in the module. The module also contains one input for connecting an external NTC temperature sensor and binary SSR output (Solid State Relay for heating controls, etc.).

Tab. 5.55 Dasic paran	
Display	
Туре	LCD (to display one value
	+ graphic symbols)
Control element	Roller with button
Analog input	
Quantity	2
Type of input	Temperature sensor
	(internal, external)
Sensor type	Thermistor NTC 12k
Range	-20 ÷ +100 °C
Accuracy	0,8 °C
Binary output	
Quantity	1
Туре	SSR relay (Solid State Relay)
Galvanic isolation	Yes, 1500V
Typical Voltage	24 V AC/DC (max. 60 V)
Max. current	600 mA
Power supply	
Power supply and	24 V (27 V) from the CIB
communication	
Nominal power	17mA
consumption	
Dimensions and weight	
Dimensions	90 × 115 × 39mm
Weight	130g
Operating and installati	
Operating temperature	0 ÷ +60 °C
Storage temperature	–30 ÷ +70 °C
Electrical strength	according to EN 60950
IP degree of protection	IP 20
acc. IEC 529	
Overvoltage category	111
Degree of pollution	2
EN 61131-2	
Operating position	Arbitrary
Mechanical design	Plastic box
Installation	On wall, on flush box
Connecting	screw type terminals
Cross-section of wires	max. 1,5 mm ²

Tab. 3.35 Basic parameters RCM2-1

Fig. 3. 96 View and connection exampleRCM2-1

3.35.1. Configuration

RCM2-1 - RCM2-1			×
Offset teploty (korekce +-) Interní čidlo Externí čidlo	0,0 0,0	 € € € 	
🗸 ок		🗙 Zrušit	

Fig. 3.97 Module configuration

Temperature offset

Correction offset of internal thermometer, which will be added on the measured temperature of internal thermometer.

3.35.2. The structure of the transmitted data

Module contains 5 devices in total:

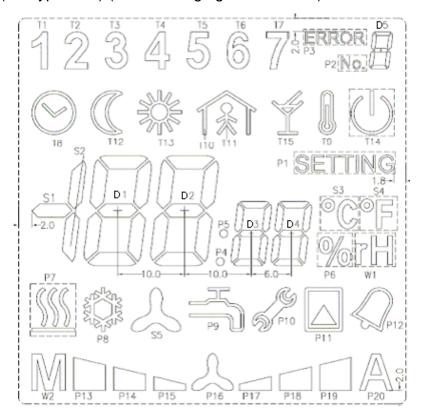
```
device 1, input, 3*DI (roller flags)
device 2, output, DISP (values + symbols)
device 3, input, 1*AI (internal thermometer)
device 4, input, 1*AI (external thermometer)
device 5, input, 1*AI (roller counter)
```

The devices are incorporated into the structure of the transmitted data, which is evident from window I/O setting in the Mosaic. Window is available after pressing icon 10 in toolbar.

🔧 Nastavení V/V - Konfiguraci nelze měnit					
IEC 💑 💑 DEC EXP HEX BIN STR 🔝 🛅 6:5 S102=\$00					
O RMO					
0 CP-1004 2 MI2-01M 3 IR-105	7				
Struktura dat	Úplný zápis	Alias 🌗	Svorka ⁴	Abs./délka	Hodnota 4
E Statistic_MI_CIB1 💠 TCHStatistic 🗛	r0_p2_Statistic_MI_CIB1			XX0 / 10	
Control_MI_CIB1 : TCHControl	r0_p2_Control_MI_CIB1			%Y072	\$0000
□ ID1_IN : TMI_CIB1_ID1_IN	MI_CIB1_IN~ID1_IN				
E-FLG : TCIB_RCM_FLG	MI_CIB1_IN~ID1_IN~FLG				\$00
-PRESS : BOOL 🍒	MI_CIB1_IN~ID1_IN~FLG~PRESS			%R4.0	0
LEFT : BOOL 🔶	MI_CIB1_IN~ID1_IN~FLG~LEFT			%R4.1	0
RIGHT : BOOL 🗛	MI_CIB1_IN~ID1_IN~FLG~RIGHT			%R4.2	0
—itherm : real 🗛	MI_CIB1_IN~ID1_IN~iTHERM			%RF5	0
-etherm : real 🍒	MI_CIB1_IN~ID1_IN~eTHERM			%RF9	0
-Counter : SINT 🔶	MI_CIB1_IN~ID1_IN~Counter			%R13	0
DILOUT : TMI_CIB1_ID1_OUT	MI_CIB1_OUT~ID1_OUT				
	MI_CIB1_OUT~ID1_OUT~VAL				
VALUE : INT	MI_CIB1_OUT~ID1_OUT~VAL~VALUE			%RW14	0
ERROR : USINT 🥵	MI_CIB1_OUT~ID1_OUT~VAL~ERROR			%R16	0
EHCO : TCIB_RCM_ICO	MI_CIB1_OUT~ID1_OUT~ICO				
-ONE : BOOL 🥵	MI_CIB1_OUT~ID1_OUT~ICO~ONE			%R17.0	0
— TWO : BOOL 🥵	MI_CIB1_OUT~ID1_OUT~ICO~TWO			%R17.1	0
—THREE : BOOL 🥵	MI_CIB1_OUT~ID1_OUT~ICO~THREE			%R17.2	0

Fig. 3.98

The structure of the transmitted data


Input data

	FLG	iTHERM	eTHERM	COUNTER	
FLG	PRE LEF	 roller status (8x type bool) PRESS - roller pressed (function of button) LEFT - anti-clockvwise turning (when turning the value 1-0-1-0is passed) RIGHT clockvwise turning (when turning the value 1-0-1-0is passed) 			
iTHER	M - tempe	- temperature of internal sensor (type real) [°C]			
eTHEF	<i>eTHERM</i> - temperature of external sensor (type real) [°C]				
COL	JNTER - cyclic	counter of roller position	(type sint)		

Output data

VALUE	ERROR	ICO

- VALUE value to be displayed on the main 7-segment display (type int) the value displayed depends on visibility segments S1 S2 and D1 D4
- *ERROR* value to be displayed on side 7-segment display (type usint) the value displayed depends on visibility segment D5
- ICO flags to control visibility of symbols / segments on display, binary output (48* type bool) (see folloving figure and table)

T1 ONE T2 TWO T3 THREE T4 FOUR T5 FIVE T6 SIX T7 SEVEN P3 ERROR P2 No T8 Clock T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13	Icon / segment	Symbolic name
T2 TWO T3 THREE T4 FOUR T5 FIVE T6 SIX T7 SEVEN P3 ERROR P2 No T8 Clock T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rot		
T3 THREE T4 FOUR T5 FIVE T6 SIX T7 SEVEN P3 ERROR P2 No T8 Clock T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 <		
T4 FOUR T5 FIVE T6 SIX T7 SEVEN P3 ERROR P2 No T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP3 P20 Automatic S1		
T5 FIVE T6 SIX T7 SEVEN P3 ERROR P2 No T8 Clock T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17		
T6 SIX T7 SEVEN P3 ERROR P2 No T8 Clock T11 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18		
T7 SEVEN P3 ERROR P2 No T8 Clock T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2		
P3 ERROR P2 No T8 Clock T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20		
P2 No T8 Clock T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 <td></td> <td></td>		
T8 Clock T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2<		
T12 Moon T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 S2 <td></td> <td></td>		
T13 Sun T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 S2 S2 S2 S2 S2 S2 S2 S		
T10 House T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE<		
T11 Figure T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
T15 Drink T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
T9 Thermometer T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
T14 Power P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P1 Setting S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4		
S3 Celsius S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4		
S4 Fahrenheit P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4		
P6 Percent W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4		
W1 rH P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4		
P5 dotUp P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4		
P4 dotDown P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4		
P7 Heating P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P8 Cooling S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4		
S5 Ventilation P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P9 Water P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P10 Spanner P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P11 P11 P12 Bell W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
W2 Manual P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4	P11	
P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4	P12	Bell
P13 LN3 P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4		
P14 LN2 P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P15 LN1 P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P16 Rotation P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P17 LP1 P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		Rotation
P18 LP2 P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P19 LP3 P20 Automatic S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
P20AutomaticS1MinusS2S2D1D1D2D2D3D3D4D4D5DE		
S1 Minus S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
S2 S2 D1 D1 D2 D2 D3 D3 D4 D4 D5 DE	S1	
D1 D1 D2 D2 D3 D3 D4 D4 D5 DE		
D2 D2 D3 D3 D4 D4 D5 DE		
D3 D3 D4 D4 D5 DE		
D4 D4 D5 DE		
D5 DE		

Fig. 3. 99 Layout of symbols and segments on display RCM2-1

4. Attachments

Attachment 1

Order codes of CIB modules.

	Module identification	Order number
Ι	MI2-02M	TXN 131 28
	CF-1141	TXN 111 41
1	C-AM-0600I	TXN 133 50
2	C-AQ-0001R	TXN 133 12
3	C-AQ-0002R	TXN 133 13
4	C-AQ-0003R	TXN 133 14
5	C-AQ-0004R	TXN 133 15
6	C-DL-0012S	TXN 133 23
7	C-DL-0064M	TXN 133 54
8	C-DM-0006M-ILED	TXN 133 46
9	C-DM-0006M-ULED	TXN 133 45
10	C-DM-0402M-RLC	TXN 133 58
11	C-HC-0201F-E	TXN 133 48
12	C-HM-0308M	TXN 133 24
13	C-HM-1113M	TXN 133 10
14	C-HM-1121M	TXN 133 11
15	C-IB-1800M	TXN 133 06
16	C-IR-0202S	TXN 133 25
17	C-IR-0203M	TXN 133 59
18	C-IT-0100H-A	TXN 133 17
19	C-IT-0100H-P	TXN 133 16
20	C-IT-0200I	TXN 133 09
21	C-IT-0200R	TXN 133 19
22	C-IT-0200S	TXN 133 29
23	C-IT-0504S	TXN 133 26
24	C-IT-0908S	TXN 133 52
25	C-OR-0008M	TXN 133 03
26	C-OR-0202B	TXN 133 02
27	C-RC-0002R	TXN 133 33
28	C-RC-0003R	TXN 133 37
29	C-RI-0401S	TXN 133 47
30	C-WG-0503S	TXN 133 53
31	C-WS-0200R	TXN 133 30
32	C-WS-0400R	TXN 133 31
33	C-WS-0200R-Logus	TXN 133 56
34	C-WS-0400R-Logus	TXN 133 57
35	RCM2-1	TXN 131 57

<u>Notes</u>

.

<u>Notes</u>

Objednávky a informace: Teco a. s. Havlíčkova 260, 280 58 Kolín 4, tel. 321 737 611, fax 321 737 633

TXV 004 13.01

The manufacturer reserves the right to change the documentation. The last issue is available on the Internet www.tecomat.cz.