
PLC programming according to the IEC 61 131-3 standard

PLC programming according to the IEC 61 131-3
standard in the Mosaic environment

10th edition
November 2007

All rights reserved

1 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

History of versions

Date Issue Description of changes
 August 2004 1 First version
 October 2004 2 The description of standard libraries was added
January 2005 3 Adaptation for Mosaic Help performed.
February 2005 4 Example correction 3.6.2.5 – the word ’’DO“ added

April 2005

5

Table.3.3 Special signs in strings added
Correction of the SINT type range in chapter 3.2.1 in Table.3.5
Table.3.18 added function for calling above character string
Added chapter 3.7.2 Library of functions above character string

November
2005

6

Description of library of conversion functions added
Table 3.20 Standard functions with date and time function amended
PTR_TO data type description added

February 2006
7

Description of data types and variables expanded
Description of library of arithmetic functions

March 2006

8

Basic programming principles according to standard added
IL language description added
Library description transferred into separated document TXV 003 22

November
2006 9

Description of directives added

November
2007 10

LD and FBD graphic languages description added

2 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

1 INTRODUCTION

1.1 The IEC 61 131 standard

The IEC 61 131 standard for programmable control systems consists of 5 parts and repre-
sents an overview of requirements for advanced control systems. It is independent of any particular
organization or company and has a wide international support. Constituent parts of the standard
deal with both hardware and software of these systems.

In the Czech Republic, the relevant parts of this standard have been adopted under the fol-
lowing numbers and titles:

ČSN EN 61 131-1 Programmable controllers - Part 1: General information
ČSN EN 61 131-2 Programmable controllers - Part 2: Requirements for equipment and tests
ČSN EN 61 131-3 Programmable controllers - Part 3: Programming language
ČSN EN 61 131-4 Programmable controllers - Part 4: User support
ČSN EN 61 131-5 Programmable controllers - Part 5: Communication
ČSN EN 61 131-7 Programmable controllers - Part 7: Programming of fuzzy control

Within the European Union, these standards have been adopted under number EN IEC 61 131.

The IEC 61 131-3 standard defines programming languages and is the third part from the

IEC 61 131 family of standards and represents the first real attempt to standardize programming
languages for industrial automation.

The 61 131-3 standard can be viewed from different points of view, such as it is a result of a heavy
work of seven international companies participating in the formulation of the standard and having a
ten year experience in the field of industrial automation. Another point of view is that it contains
about 200 pages with text and about 60 tables. A team belonging to the working group SC65B
WG7 of the International standardization organization IEC (International Electrotechnical Commis-
sion) participated in its formulation. The result of its work is Specification of syntax and semantics
of unified family of programming languages, including general software model and structurising
language. This standard was adopted as the directive by majority of important PLC manufacturers.

1.2 Terminology

The family of standards for programmable controllers was adopted in the Czech Republic,
but has not been translated into Czech yet. For this reason, the terminology in this manual is used as
it has been lectured at the Czech Technical University in Prague. At the same time, English termi-
nology is used in the text, the task of which is to assign Czech terms to the English source.

3 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

1.3 The basic idea of the IEC 61 131-3 standard

The IEC 61 131-3 standard is the third part of the IEC 61 131 family of standards. It can be
divided into two basic parts:

 Mutual features
 Programming languages

1.3.1 Mutual features

Data types

Within the frame of mutual features, data types are defined. Defining data types helps pre-
vent errors already at the beginning of the project. It is necessary to define the types of all used pa-
rameters. Usual data types are BOOL, BYTE, WORD, INT (Integer), REAL, DATE, TIME, STRING
etc. It is possible to derive your own user data types from these basic ones, i.e. derived data types.
This way it is possible, e.g. to define an independent analog input channel data type and repeatedly
use it under a defined name.

Variables

Variables may be explicitly assigned to hardware addresses (e.g. to inputs, outputs) only in
configurations, sources or programs. This way a great level of hardware independency is achieved
together with the possibility of using the software repeatedly on different hardware platforms.

The sphere of action of the variables is standardly limited to the organizational unit in which
they were declared (variables are local there). This means that their names may be used in different
parts without limitations. Many further errors are eliminated by this precaution. Should variables
have a global sphere of action, e.g. within the whole project, then they must be declared as global
(VAR_GLOBAL). An initial value can be assigned to the parameters during the start or cold start of
a process or machine so to be able to set the correct initial state.

Configuration, resources and tasks

The highest level of a complete software solution of a specific control problem is called a
configuration. The configuration is dependent on the specific control system, including hardware
lay-out, e.g. processor unit types, memory areas assigned to input and output channels and charac-
teristics of the system program equipment (the operation system).

Within the frame of the configuration, we can then define one or more so called resources.
We can view the resources as a type of device that is able to execute IEC programs.

We can define one or more so called tasks in the resource. The tasks control executions of
program groups and/or of function block. These units may be executed either periodically or after
the creation of a special launch event which can be for instants a changed variable.

Programs are created from a row of various software items which are registered in one of
the languages defined by the standard. A program is often created from a network of functions and
function blocks which are able to exchange data. Functions and function blocks are the foundation
stones which contain data structures and algorithms.

4 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Program organization units

Functions, function blocks and programs are within the IEC 61 131 standard referred to as
Program Organization Units. Sometimes the abbreviation POU is used for this frequently used and
important term.

Functions

The IEC 61 131-3 standard defines standard functions and user defined functions. Standard
functions are e.g. ADD for summing, ABS for absolute value, SQRT for square root, SIN for sine
and COS for cosine. After user functions are defined, they can be used repeatedly.

Function blocks

We can understand function blocks as integrated circuits which represent a hardware solu-
tion for a specialized control function. They contain algorithms and data, so they can keep a history
record (in contrast to functions). They have a clearly defined interface and hidden internal vari-
ables, analogous to integrated circuits or black boxes. They are able to unambiguously separate two
levels of programmers or service personnel. A classic example of function blocks are e.g. tempera-
ture regulation loops or PID regulators.

Once a function block is defined, it can be repeatedly used in the given program, in a differ-
ent program or even in a different project. It is universal and has unlimited use. Function blocks
may be programmed in a random programming language defined by the standard. So they can be
fully user defined. Derived function blocks are based on standard function blocks but it is possible,
within the standard rules, to create new customer function blocks.

The interface of functions and function blocks is described in the same way: Between a dec-
laration determining block name and a declaration for block end, lies a list of declarations of input
and output declarations and a unique code in the so called block body.

Programs

According to the above mentioned, it is possible to say that a program is really a network of
functions and function blocks. A program may be programmed in a random programming language
defined by the standard.

5 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

1.3.2 Programming languages

Four programming languages are defined by the standard. Their semantics and syntax are
exactly defined and no room for inexact expressions is left. By being able to work with these lan-
guages a new door opens to the use of a wide range of control systems which are based on this stan-
dard.

Programming languages can be divided into the following basic categories:

Text languages
IL - Instruction List language
ST - Structured Text language

Graphic languages
LD - Ladder Diagram language (contact diagram language)
FBD - Function Block Diagram language

For the first overview, the same logical function is shown of Figure 1.1.; the sum of variable
A and negated variable B with the result saved into variable C; expressed in all four programming
languages.

Figure 1 ANDN logical function in all four basic languages

The choice of programming languages depends on the programmer’s experience, on the
type of problem, on the level of problem description, on the control system structure and on many

6 TXV 003 21.02

Jazyk příčkového diagramu
(LD)

Jazyk strukturovaného textu
(ST)

Grafické jazyky

Jazyk seznamu instrukcí
(IL)

Jazyk funkčního blokového schématu
(FBD)

LD A
ANDN B
ST C

C:=A AND NOT B

AND

B
C

BA

A

C

Textové jazyky

PLC programming according to the IEC 61 131-3 standard

more factors, e.g. industry type, custom practice of company implementing the control system,
team co-worker experience, etc.

All of the four basic languages (IL, ST, LD and FBD) are interconnected. Applications pro-
grammed using them, create a specific basic set of information to which a great volume of technical
know-how is connected to. They create a basic communication tool for the cooperation between
various industries and fields.

LD - Ladder Diagram language
- originates in the USA. Based on graphic representation of relay logic.

IL - Instruction List language
- European version of the LD. A text language similar to an assembler.

FBD - Function Block Diagram language
- very close to the processing industry. Expresses behavior of functions, function blocks and
programs as a set of interconnected graphical blocks, similar to electronic circuit diagrams.
It is a specific system of items which processes signals.

ST - Structured Text language
- a very powerful programming language which is based on the well known languages Ada,
Pascal and C. It contains all important components of a modern programming language, in-
cluding branching (IF-THEN-ELSE and CASE OF) and iterative loops (FOR, WHILE and
REPEAT). These may be immersed. This language is an excellent tool for defining complex
function blocks which then may be used in whichever programming language.

It is known that two approaches exist for systematic programming: top-down or bottom-up.
The mentioned standard supports both approaches. We can either specify the whole applica-

tion and divide it into parts (subsystems), declare variables, etc. or we can start programming the
application bottom-up, e.g. through derived (user) functions and function blocks. Whatever method
we choose, the Mosaic development environment, which complies with IEC 11 131-3 standard,
will support and help creating whole applications.

7 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

2 BASIC TERMS

This chapter briefly explains the meaning and use of basic terms when programming in
accordance to standard IEC 61 131-3. These terms will be explained using simple examples. A
detailed description of the terms being explained can be found in further chapters.

2.1 Basic program blocks

The basic term when programming according to the IEC 61 131 standard is the term
Program Organisation Unit (POU). As it can be seen from the name, the Program Organisation
Unit is the smallest independent part of a user program. POUs can be delivered by the
manufacturers of control systems or they can be created by the user himself. Each POU can call
another POU and during the call operation, it can pass optionally one or more parameters onto the
POU being called.

There are three basic types of POUs :

 Function (FUN)
 Function block (FB)
 Program (PROG)

The elementary POU is function, the main feature of which is that if it is called with the
same input parameters, it must produce the same result (function value). This function can return
one result only.

Another type of POU is function block, which, when compared with the function, can
remember some values from previous calls (status information, for example). These then can affect
the result. The main difference between the function and the function block is the capability of the
function block to have memory to store values of some variables. Functions do not have this
properties and their result is unequivocally determined by input parameters when calling the
function. The function block can (unlike the function) return more than one result.

The last type of POU is program, representing the highest programming unit in the user
program. The PLC central unit can process more programs and the ST language has means for the
definitions of program initialisations (at what period of time, with what priority, etc. the program is
executed).

Each POU consists of two basic parts: declaration and executive as it can be seen on Figure
2.1. In the declaration past of the POU, variables necessary for POU operation are defined. The
executive part contains statements for the execution of the algorithm in question.

The definition of POU on Figure begins with the key word PROGRAM and is ended by the
key word END_PROGRAM. These key word define the range of the POU. Behind the key word
PROGRAM is the name of the POU, followed by the POU declaration part. The declaration part
contains definitions of variables given between the key words VAR_INPUT and END_VAR or VAR

8 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

and END_VAR as the case may be. The executive part of the POU contains statements of the ST
language for variables processing. The texts between characters (* and *) are comments.

Figure 2 Basic POU structure

9 TXV 003 21.02

Instrukce

(tělo POU)

Vstupní a výstupní proměnné

Lokální proměnné
Deklarační část

Výkonná část

PROGRAM jménoProg FUNCTION_BLOCK jménoFB FUNCTION jménoFUN

END_PROGRAM END_FUNCTION_BLOCK END_FUNCTION

PLC programming according to the IEC 61 131-3 standard

Figure3 Basic POU PROGRAM structure

2.2 POU variables declaration

Variables are used to store and process information. Each variable is defined by the name
and data type. The data type specifies the size of the variable in the memory and at the same time, it
defines to a great extent the way of variable processing. For the definitions of variables, standard
data types are available (Bool, Byte, Integer, ...). The use of these types depends on what kind of
information will be saved at the variable (e.g. Boolean type for information YES - NO, INT type
for saving integers with sign, etc.). The user has a possibility to define his/her own data types. The
position of the variables in the memory is ensured automatically by the programming environment.
If necessary, the position of the variables in the memory can be defined by the user, too.

According to the purpose of use, variables can be divided into global and local ones. Global
variables are defined outside the POU and can be used at any POU (they are "visible" from any
POU). Local variables are defined inside the POU and they can be used within this POU (they are
not "visible" from other POUs).

Finally, variables can be used to pass parameters during POU calling. In such cases, we talk
about input or output variables, as the case may be.

10 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Example 1 POU variables declaration

FUNCTION_BLOCK PromExampleDeclaration

 VAR_INPUT (* input variables *)
 logCondition : BOOL; (* binary value *)
 END_VAR
 VAR_OUTPUT (* output variables *)
 Result : INT; (* integer value with sign *)
 END_VAR
 VAR (* local variables *)
 CheckSum : UINT; (* integer value *)
 PartResult : REAL; (* real value *)
 END_VAR

END_FUNCTION_BLOCK

In example 2.1., a POU input variable is defined, the name of it is logCondition and is of the
BOOL type, which means it can contain the TRUE value (logic "1") or the FALSE value (logic
"0"). This variable serves as the input parameter passed during POU calling.

Another defined variable is the output one, the name of which is result and is of INT type
(integer) so it can contain integer values in the range from –32 768 to +32 767. At this variables,
the value is passed onto a superordinate POU.
 The variables defined between the key words VAR and END_VAR are local ones and they
can therefore be used within the POU in question only. The variable CheckSum is of UINT type
(unsigned integer) and can store integers in the range from 0 to 65535. The variable PartResult is
of REAL type and is used for work with real numbers.

2.3 POU executive part

The POU executive part follows the declaration one and contains statements and instructions,
which are processed by the PLC central unit. In exceptional cases, the POU definition does not
need to contain any declaration part and, in this case, the executive part is written immediately
behind the POU start definition. An example can be a POU working only with global variables,
which is not an ideal solution, but it can exist.

The POU executive part can contain call instructions of further POUs. During the execution
of the call instructions, there can be passed parameters for the functions being called or for function
blocks, as the case may be.

11 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

2.4 Program example

Example 2 Program example

VAR_GLOBAL
 // inputs
 sb1 AT %X0.0,
 sb2 AT %X0.1,
 sb3 AT %X0.2,
 sb4 AT %X0.3 : BOOL;
 // outputs
 km1 AT %Y0.0,
 km2 AT %Y0.1,
 km3 AT %Y0.2,
 km4 AT %Y0.3 : BOOL;
END_VAR

FUNCTION_BLOCK fbStartStop
//--
 VAR_INPUT
 start : BOOL R_EDGE;
 stop : BOOL R_EDGE;
 END_VAR
 VAR_OUTPUT
 vystup : BOOL;
 END_VAR

 output := (output OR start) AND NOT stop;
END_FUNCTION_BLOCK

FUNCTION_BLOCK fbMotor
//--
 VAR_INPUT
 motorStart : BOOL;
 motorStop : BOOL;
 END_VAR
 VAR
 startStop : fbStartStop;
 motorIsRun : BOOL;
 startingTime : TON;
 END_VAR
 VAR_OUTPUT
 star : BOOL;
 triangle : BOOL;
 END_VAR

 startStop(start := motorStart, stop := motorStop,
 output => motorIsRun);
 startingTime(IN := motorIsRun, PT := TIME#12s, Q => triangle);
END_FUNCTION_BLOCK

12 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

PROGRAM Test
//--
 VAR
 motor1 : fbMotor;
 motor2 : fbMotor;
 END_VAR

 motor1(motorStart := sb1, motorStop := sb2,
 star => km1, triangle => km2);
 motor2(motorStart := sb3, motorStop := sb4,
 star => km3, triangle => km4);
END_PROGRAM

CONFIGURATION exampleProgramST
 RESOURCE CPM
 TASK FreeWheeling(Number := 0);
 PROGRAM prg WITH FreeWheeling : Test ();
 END_RESOURCE
END_CONFIGURATION

13 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3 COMMON ELEMENTS

This chapter describes the syntax and semantics of the basic elements of programming
languages for the PLC systems according to the IEC 61 131-3 standard.

Syntax describes the elements that are available for programming PLCs and the ways, how
they can be combined.

Semantics then formulates their meaning.

3.1 Basic elements

Each program PLC program consists of basic simple elements, certain smallest units, from which
declarations and statements are created. These simple elements can be divided into:

�� Delimiters
�� Identifiers
�� Literals
�� Keywords
�� Comments

For a better transparency, bolt type face is used for the keywords, so that the structure of
declarations and statements can be expressed better. Additionaly, they have different colours in the
Mosaic environment.

Delimiters are special characters (such as (,), =, :, space, etc.) with different meanings.

Identifiers are alphanumeric character strings used for the expression of user functions,
labels or POUs (such as Temp_N1, Switch_On, Step4, Move_right, etc.).

Literals are used for direct representation of variable values (such as 0,1; 84; 3,79; TRUE ;
green etc.).

Keywords are standard identifiers (such as FUNCTION, REAL, VAR_OUTPUT, etc.). Their
exact formulation and meaning corresponds to the standard IEC 61 131-3. The keywords must not
be used for creation of any user names. For typing of keywords, both lower-case and upper-case
letters can be used including any of their combinations. Among the reserved keywords belong:

 names of elementary data types
 names of standard functions
 names of standard function blocks
 names of input parameters of standard functions
 names of input and output parameters of standard function blocks
 IL and ST language elements

All reserved keywords are shown in annex H of the standard IEC 61 131-3.

Comments do not have any syntactic or semantic meaning, but they are an important part of
program documentation. A comment can be written anywhere, where the space character can be

14 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

typed. During compilation, these strings are ignored, and so they can contain also the characters of
national alphabets. The language compiler can recognize two types of comments:

 General comments
 Line comments

General comments are character strings beginning with (* and terminated with *). This
allows writing all the necessary types of comments as you can see from the example below. Line
comments are character strings beginning with // and terminated by the line end. The advantage of
line comments is the possibility to be nested into general comments (see lines with definition of
variables Help1 a Help2 in the following example, which will be considered as a comment and will
not be compiled by the compiler).

Example 3 Comments

(***
this is an example
of a multi-line comment
***)
VAR_GLOBAL
 Start, (* general comment, e.g. : button START *)
 Stop : BOOL; (*STOP button*)
 Help : INT; // line comment
(*
 Help1 : INT; // nested line comment
 Help2 : INT;
*)

END_VAR

3.1.1 Identifiers

An identifier is a string of letters (lower-case or upper-case letters), numbers underline
characters and is used to name the following elements of language ST:

�� constant name
�� names of variables
�� names of derived data types
�� names of functions, function blocks and programs
�� names of tasks

An identifier has to begin with a letter or underline character and must not contain space
characters. The national alphabet characters (letters with breves and acutes) are not allowed to be
used in the identifiers. The location of the underline character is of importance, for example
„BF_LM“ and „BFL_M“ are two different identifiers. There are not allowed more underline
characters following each other. The size of the letter in an identifier does not play any role. For
example motor_off equals to MOTOR_OFF or Motor_Off. If motor_off is a name of a variable,
then all the representations will mean the same variables.

The maximum length of an identifier is 64 characters.

15 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.1 Examples of valid and invalid identifiers

Valid identifiers Invalid identifiers
XH2 2XH

MOTOR3F, Motor3F 3FMOTOR
Motor3F_Off, Motor3F_OFF MOTOR3F__Off

SQ12 SQ$12
Delay_12_5 Delay_12.5

Rek Řek
_3KL22 __3KL22
KM10a KM 10a

Example 4 Identifier

TYPE
 _Phase : (star, triangle);
END_TYPE

VAR_GLOBAL CONSTANT
 _3KL22 : REAL := 3.22;
END_VAR

VAR_GLOBAL
 SQ12 AT %X0.0 : BOOL;
 KM10a AT %Y0.0 : BOOL;
 XH2 : INT;
END_VAR

FUNCTION_BLOCK MOTOR3F
 VAR_INPUT
 Start : BOOL;
 END_VAR
 VAR
 Delay_12_5 : TIME;
 Status : _Phase;
 END_VAR
 VAR_OUTPUT
 Motor3F_Off : BOOL;
 END_VAR

END_FUNCTION_BLOCK

16 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.1.2 Literals

Literals are used for the direct representation of variable values.
Literals can be divided into three groups:

�� numeric literals
�� character strings
�� time literals

If we want to emphasize a data type of a recorded literal, it is possible to record the literal
starting with a data type name followed by the sign # (e.g. REAL#12.5). In case of time lit-
erals, the stating of the type is necessary (e.g. TIME#12h20m33s).

3.1.2.1 Numeric literals

A numeric literal is defined as a number (constant) in the decimal system or in a systém
with another base than ten (e.g. binary system, octal or hexadecimal system). Numeric literals can
be divided into integer and real literals. A simple underline character located between numbers of a
numeric literal does not influence its value, it is allow for improving readability. Some examples of
numeric literals are shown in Table 3.2 .

Table.2 Examples of numeric literals

Description Numeric literal – example Note
Integer literal 14

 INT#–9
 12_548_756

-9
12 548 756

Real literal –18.0
REAL#8.0

0.123_4 0,1234
Real literal s exponentem 4.47E6

652E–2
4 470 000

6,52
Literal with base 2 2#10110111 183 decimally
Literal with base 8 USINT#8#127 87 decimally
Literal with base 16 16#FF 255 decimally

Bool literal
FALSE

TRUE

FALSE
BOOL#0

TRUE
BOOL#1

0

1

17 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Example 5 Numeric literals

VAR_GLOBAL CONSTANT
 Const1 : REAL := 4.47E6;
 Const2 : LREAL := 652E-2;
END_VAR

VAR_GLOBAL
 MagicNum : DINT := 12_548_756;
 Amplitude : REAL := 0.123_4;
 BinaryNum : BYTE := 2#10110111;
 OctalNum : USINT := 8#127;
 HexaNum : USINT := 16#FF;
 LogicNum : BOOL := TRUE;
END_VAR

FUNCTION Parabola : REAL
 VAR_INPUT
 x,a,b,c : REAL;
 END_VAR

 IF a <> 0.0 THEN
 Parabola := a*x*x + b*x + c;
 ELSE
 Parabola := 0.0;
 END_IF;
END_FUNCTION

PROGRAM ExampleLiterals
 VAR
 x,y : REAL;
 END_VAR

 y := Parabola(x := x, a := REAL#2.0, b := Const1, c := 0.0);
END_PROGRAM

3.1.2.2 Character string literals

A character string is a sequence of no string (empty string) or of more characters, starting
and ending with (‘). Examples: ‘‘ (empty string), ‘temperature‘ (not empty string of the length
eleven, containing word temperature).

The dollar characters, $ is used as a prefix allowing introduction of special characters in a
string. Special characters not being printed, are used for example for text formatting for a printer or
on a display. If the dollar character is before two hexadecimal number, the string is interpreted as
hexadecimal representation of an eight-bit code of a character. For example, string ‘$0D$0A‘ is
understood as representation of two codes, 00001101 and 00001010. The first code represents the
Enter character at the ASCII Table, (CR, decimally 13) and the second code represents LineFeed
character (LF, decimally 10).

Literals of a character string, so called strings, are used for example for text exchange
among various PLCs or among a PLCs and another components of an automation system, or for
programming texts that are displayed on control units or operator panels.

18 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.3 Special characters in strings

Used as: Meaning
$$ Dolar character
$' Single quote mark character
$L or $l Line feed (16#0A) character
$N or $n New line character
$P or $p New page character
$R or $r Carriage return (16#0D) character
$T or $t Tab (16#09) character

Table.4 Examples of character string literals

Example Note
'' Empty string, 0 length

'temperature' Not empty string, 11 character length
'Character $'A$'' String containing quotation mark (Character 'A')

' End of text $0D$0A' String terminated by CR and LF characters
' Price is 12$$' String containing a $ character
'$01$02$10' String containing three characters: 1,2 and 16

Example 6 Character sting

PROGRAM ExampleStrings
 VAR
 message : STRING := ''; // empty string
 value : INT;
 valid : BOOL;
 END_VAR

 IF valid THEN
 message := 'Temperature is ';
 message := CONCAT(IN1 := message, IN2 := INT_TO_STRING(value));
 message := message + ' [C]';
 ELSE
 message := 'Temperature is not available !';
 END_IF;
 message := message + '$0D$0A';
END_PROGRAM

19 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.1.2.3 Time literals

When performing control, we need two various data types that are related to the time in
some way. Firstly, it is duration data, which means a period of time elapsed or should elapse in
connection with an event. Secondly, it is "absolute time" data consisting of date (according to the
calender) and time data within one day, called time of day. The time data can be used for
synchronization of the start or end of an event being controlled in relation to the absolute time
frame. Examples of time literals are shown in Table 3.6.

Duration. A time literal for duration begins with some of the keywords T#, t#, TIME#,
time#. The time data itself is expressed in time units: hours, minutes, seconds and milliseconds. The
abbreviations for individual parts of the time data are shown in Table 3.5. For their notification,
lower-case as well as upper-case letters can be used.

Table.5 Abbreviations for time data

Abbreviation Meaning
ms, MS Miliseconds
s, S Seconds
m, M Minutes
h, H Hours
d, D Days

Day time and date. Date and time data representation within a day is the same as at ISO
8601. The prefix can be long or short. The keywords for a date are D# or DATE#. For time data
within a day, keywords TOD# or TIME_OF_DAY# are used. For summary data on "absolute time",
keywords DT# or DATE_AND_TIME# are used. The size of letters is again not important.

Table.6 Examples of various time literals

Description Examples
Duration T#24ms, t#6m1s, t#8.3s

 t#7h_24m_5s, TIME#416ms
Date D#2003-06-21

DATE#2003-06-21
Day time TOD#06:32:15.08

TIME_OF_DAY#11:38:52.35
Date and day time DT#2003-06-21-11:38:52.35

DATE_AND_TIME#2003-06-21-11:38:52.35

20 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Example 7 Time literals

VAR_GLOBAL
 myBirthday : DATE := D#1982-06-30;
 firsthManOnTheMoon : DT := DT#1969-07-21-03:56:00;
END_VAR

PROGRAM ExampleDateTime
 VAR
 coffeeBreak : TIME_OF_DAY := TOD#10:30:00.0;
 dailyTime : TOD;
 timer : TON;
 startOfBreak : BOOL;
 endOfBreak : BOOL;
 END_VAR

 dailyTime := TIME_TO_TOD(GetTime());
 startOfBreak := dailyTime > coffeeBreak AND dailyTime < TOD#12:00:00;
 timer(IN := startOfBreak, PT := TIME#15m, Q => endOfBreak);
END_PROGRAM

3.2 Date type

In accordance with the standard IEC 61 131-3, for different language are defined by so called
elementary, predefined data types, generic data types for related data types groups. A mechanism
is available, by which the user can create his/her own user data types (derived data types, type
definition).

3.2.1 Elementary data types
Elementary data types are characterized by their data width (number of bits) or also by their

value range. An overview of supported data types is stated in Table.3.7.

21 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

 Table.7 Elementary data types

Keyword English Data type Bits Value range
BOOL Boolean Boolean number 1 0,1
SINT Short integer Short integer 8 –128 to 127
INT Integer Integer 16 –32 768 to

+32 767
DINT Double integer Integer,

double length
32 –2 147 483 648 to

+2 147 483 647
USINT Unsigned

short integer
Unsigned integer, short 8 0 to 255

UINT Unsigned
integer

Integer, unsinged 16 0 to 65 535

UDINT Unsigned
double integer

Integer unsigned,
double length

32 0 to
+4 294 967 295

REAL Real
(simple

precision)

Number in floating point
(simple precision)

32 ±2.9E-39 to
±3.4E+38

Acc. IEC 559
LREAL Long real

(double
precision)

Number in floating point
(double precision)

64 Acc.IEC 559

TIME Duration Duration 24d 20:31:23.647
DATE Date (only) Date From 1.1.1970 00:00:00

TIME_OF_DAY or
TOD

Time of day
(only)

Time of day 24d 20:31:23.647

DATE_AND_TIME
or DT

Date and time
of day

„Absolute time“ From 1.1.1970 00:00:00

STRING String String Max.255 characters
BYTE Byte(bit string

of 8 bits)
8 bit sequence 8 No range declared

WORD Word (bit string
of 16bits)

16 bit sequence 16 No range declared

DWORD Double word
(bit string
 of 32 bits)

32 bit sequence 32 No range declared

Initialization of elementary data types

An important principal when programming according to the IEC 61 131-3 is that all pro-
gram variables have the same initial (start) value. If the user does not state differently, the variable
will be initialized with an implicit (preset, default) value, according to the used data type. Prede-
fined initial values for elementary data types are usually nulls, by data it is D#1970-01-01. An
overview of predefined initial values is stated in Table.3.8.

22 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.8 Predefined initial values for elementary data

Data types Initial Value
BOOL, SINT, INT, DINT 0
USINT, UINT, UDINT 0
BYTE, WORD, DWORD 0
REAL, LREAL 0.0
TIME T#0s
DATE D#1970-01-01
TIME_OF_DAY TOD#00:00:00
DATE_AND_TIME DT#1970-01-01-00:00:00
STRING ’ ’ (empty string)

3.2.2 Generic data types

Generic data types always express the whole group (genus) of data types. They start with
prefix ANY. For example, by notation of ANY_BIT, all data types shown further are under-
stood: DWORD, WORD, BYTE, BOOL. An overview of generic data types is shown in
Table 3.9. The names of generic data types begining with ANY_ are not according to the IEC
keywords. The are intended only for marking type groups with the same features.

Table.9 Overview of generic data types

ANY
ANY_BIT ANY_NUM ANY_DATE

BOOL
BYTE
WORD

DWORD

ANY_INT ANY_REAL
INT

SINT
DINT

UINT
USINT
UDINT

REAL
LREAL

DATE
DATE_AND_TIME

TIME_OF_DAY

TIME
STRING

3.2.3 Derived data types

Derived types, i.e. types specified by manufacturer or by user, can be declared by means of
textual structure TYPE…END_TYPE. The names of new types, their data types, possible with
their initial values, are given within this textual structure. These derived data types can be further
used together with the elementary data types in declarations of variables. The definition of the de-

23 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

rived data type is global, i.e. can be used in any PLC program part. The derived data type takes ad-
opts the type features from which it was derived from.

3.2.3.1 Simple derived data types

Simple derived data types originate directly from elementary data types. The most common
reason for creating a new data type is its different initialization value, which can be assigned direct-
ly in the type declaration using a assignment operator “:=”. If its initialization value is not declared
in the declaration of the new type then it accepts the initialization value from the type it was de-
rived from.

The enumerated data type also belongs to simple derived data types. It is usually used for
naming features or versions instead of using a number code to each version which makes the pro-
gram easier to read. The initialization value of the enumerated data type is always the value of the
first element stated in the enumeration.

Example 8 Example of s imple derived data types

TYPE
 TMyINT : INT; // simple derived data types
 TRoomTemp : REAL := 20.0; // new data type with initialization
 THomeTemp : TRoomTemp;
 TPumpMode : (off, run, fault); // new data type declared via

 enumerated values
END_TYPE

PROGRAM SingleDerivedType
 VAR
 pump1Mode : TPumpMode;
 display : STRING;
 temperature : THomeTemp;
 END_VAR

 CASE pump1Mode OF
 off : display := 'Pump no.1 is off';
 run : display := 'Pump no.1 is running';
 fault : display := 'Pump no.1 has a problem';
 END_CASE;
END_PROGRAM

Single element variables having user type declared can be used anywhere, where a variable
of "parent" type can be used. For example, variable “temperature” from example 3.6 can be used
anywhere, where variables of type REAL can be used. This rule can be applied recursively.

Array or structure can also be a new data type.

24 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.2.3.2 Derived array data type

One-dimensional arrays

An array is an aligned row of elements of the same data type. Every element of the array has
an index assigned to it, through which it is possible to access the element, i.e. the value of the index
determines with which element the array will work with. The index may only be within the value
range defined by the array. If the index value exceeds the declared array size, then a run-time error
(error executed during system running) will be executed. A one-dimensional array is an array which
has only one index, as seen in Figure 3.1.

Figure 4 A one-dimensional array

An array element may be an elementary of a derived data type. POU array instances are not
yet supported. Example 3.7 shows a declaration of a derived array data type. Declaration is done
via the keyword ARRAY followed by array dimension in square brackets. The array size deter-
mines the range of acceptable indexes. The array size is then followed by the keyword OF with a
data type specification for array elements. The index of the first array element must be a positive
number or zero. Negative indexes are not acceptable. The maximum size of an array is limited by
the memory range of variables in the control system.

Array type declaration may also contain the initialization of individual elements (see types
TbyteArray and TRealArray). Initialization values are stated in the array type declaration behind
the assignment operator “:=” in square brackets. If less initialization values are defined than needed
for the array dimension, then elements without defined initialization values have their initial values
preset according to the value of the used data type. For initializing a large number of array elements
with a same value a so called repeater can be used. In such a case the number of repeating of the
initialization value is stated in round brackets on the place of the initialization value. For example
25(-1) will initialize 25 array elements with a value of -1.

25 TXV 003 21.02

0 1 2 3 4 5 6 7 8 9 10

Prvek pole
s indexem 2

Index pole

ARRAY[0..10]

Prvek pole
s indexem 2

Prvek pole
s indexem 2
Elementární nebo
odvozené datové

typy

PLC programming according to the IEC 61 131-3 standard

Example 9 Derived data type one-dimensional array

TYPE
 TVector : ARRAY[0..10] OF INT;
 TByteArray : ARRAY[1..10] OF BYTE := [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
 TRealArray : ARRAY[5..9] OF REAL := [11.2, 12.5, 13.1];
 TBigArray : ARRAY[1..999] OF SINT := [499(-1), 0, 499(1)];
END_TYPE

PROGRAM Example1DimArray
 VAR
 index : INT;
 samples : TVector;
 buffer : TByteArray;
 intervals : TRealArray;
 result : BOOL;
 END_VAR

 FOR index := 0 TO 10 DO
 samples[index] := 0; // clear all samples
 END_FOR;
 result := intervals[5] = 11.2; // TRUE
 result := intervals[8] = 0.0; // TRUE
END_PROGRAM

Multi-dimensional arrays

Multi-dimensional arrays are arrays where we need more than one index to access one ele-
ment. The array has then one or more dimensions which can be different for each index. Two-di-
mensional arrays can be described as a matrix of elements as seen on figure 3.2. Elements of multi-
dimensional arrays may be of the elementary of derived data type, similar to one-dimensional ar-
rays.

The Mosaic compiler supports a maximum of four-dimensional arrays.

26 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Figure 5 A two-dimensional array
Initialization of multi-dimensional arrays is done in the same manner as by one-dimensional

arrays; first all elements for the first dimension are initialized (i.e. for example array[0,0],
array[0,1], array[0,2] to array[0,n]) and then the procedure is repeated for the other values of the
first index. The last elements to be initialized are for array[m,0], array[m,1], array[m,2] and finally
array[m,n]. When initializing multi-dimensional arrays, it is possible to use a repeater for initializ-
ing more elements at once as is shown in example 3.8 by the type TThreeDimArray1. The same
declaration is stated in the notes without the use of repeaters.

Example 10 Derived data type multi-dimensional array

TYPE
 TTwoDimArray : ARRAY [1..2,1..4] OF SINT := [11, 12, 13, 14,
 21, 22, 23, 24];

 TThreeDimArray : ARRAY [1..2, 1..3, 1..4] OF BYTE :=
 [111, 112, 113, 114,
 121, 122, 123, 124,
 131, 132, 133, 134,
 211, 212, 213, 214,
 221, 222, 223, 224,
 231, 232, 233, 234];

 TThreeDimArray1 : ARRAY [1..2, 1..3, 1..4] OF BYTE :=
 [4(11), 4(12), 4(13),
 4(21), 4(22), 4(23)];
(*
 TThreeDimArray1 : ARRAY [1..2, 1..3, 1..4] OF BYTE :=
 [11, 11, 11, 11,
 12, 12, 12, 12,
 13, 13, 13, 13,
 21, 21, 21, 21,
 22, 22, 22, 22,
 23, 23, 23, 23];
*)
END_TYPE

27 TXV 003 21.02

0 1 2 3 4 5 6 7 8 9 10

2. Index pole (sloupec)
ARRAY[0..5, 0..10]

0
1
2
3
4
5

1. Index pole
(řádek)

Prvek pole
s indexem [4,1] Prvek pole

s indexem 2
Prvek pole
s indexem 2
Elementární nebo
odvozené datové

typy

PLC programming according to the IEC 61 131-3 standard

PROGRAM ExampleMultiDimArray
 VAR
 twoDimArray : TTwoDimArray;
 threeDimArray : TThreeDimArray;
 element : BYTE;
 result : BOOL;
 END_VAR

 result := twoDimArray[1, 4] = 14; // TRUE
 element := threeDimArray[2, 1, 3]; // element = 213
END_PROGRAM

Similar to the derived data type array, it is possible to directly declare an array variable type
as shown in chapter 3.

3.2.3.3 Derived data type Structure

Structures are data types which contain, similar to arrays, more elements (items). However
on contrary to arrays, all elements in a structure do not have be of the same data type. A structure
can be derived from elementary as well as from derived data types. A structure can be created hier-
archy style which means that an already defined structure can be an element of a structure The situ-
ation is described in figure 3.3.

Figure 6 Structure

28 TXV 003 21.02

Prvek pole
s indexem 2

Prvek pole
s indexem 2
Elementární nebo
odvozené datové

typy

Prvek pole
s indexem 2

Prvek pole
s indexem 2Podstruktury

STRUCTURE

PLC programming according to the IEC 61 131-3 standard

The definition of a new structure data type is done using keywords STRUCT and
END_STRUCT within the construction TYPE … END_TYPE. Data types of individual elements of a
structure and their names are stated inside STRUCT … END_STRUCT. It is possible to initialize
structures by stating element values behind the sign “:=” in the same way as by the previous de-
rived data types.

If we create a structure type variable, then access to individual structure elements will be
“variableName.elementName” as seen on example 3.9.

Example 11 Derived data type Structure

TYPE
 TProduct :
 STRUCT
 name : STRING := 'Engine M11';
 code : UINT;
 serie : DINT;
 serialNum : UDINT;
 expedition : DATE;
 END_STRUCT;
END_TYPE

PROGRAM ExampleStruct
 VAR
 product : TProduct;
 product1 : TProduct;
 END_VAR

 product.code := 700;
 product.serie := 0852;
 product.serialNum := 12345;
 product.expedition := DATE#2002-02-13;
END_PROGRAM

The initialization of the structure type variables is done using structure element names when
declaring variables. The difference between initializing a structure data type and initializing a struc-
ture type variable is shown in examples 3.9 and 3.10. The functional difference is obvious. While
in example 3.9, every TProduct type variable will have a NAME element automatically initialized
to the value “Engine M11”, then in example 3.10 the implicit NAME element initialization is an
empty string that will be exchanged by the “Engine M11” string only if the variable is PRODUCT.

Example 12 Initialization of derived type Structure

TYPE
 TProduct :
 STRUCT
 name : STRING;
 code : UINT;
 serie : DINT;
 serialNum : UDINT;
 expedition : DATE;
 END_STRUCT;
END_TYPE

29 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

PROGRAM ExampleStruct
 VAR
 product : Tproduct := (name := 'Engine M11');
 product1 : TProduct;
 END_VAR

 product.code := 700;
 product.serie := 0852;
 product.serialNum := 12345;
 product.expedition := DATE#2002-02-13;
END_PROGRAM

3.2.3.4 Combining structures and arrays in derived data types

Arrays and structures can be randomly combined in definitions of derived data types. An ar-
ray may be an element of a structure and a structure may be an element of an array as shown exam-
ple 3.11.

Example 13 A structure as an element in an array

VAR_GLOBAL CONSTANT
 NUM_SENSORS : INT := 12;
END_VAR

TYPE
 TLimit :
 STRUCT
 low : REAL := 12.5;
 high : REAL := 120.0;
 END_STRUCT;

 TSensor :
 STRUCT
 status : BOOL;
 pressure : REAL;
 calibration : DATE;
 limits : TLimit;
 END_STRUCT;

 TSenzorsArray : ARRAY[1..NUM_SENSORS] OF TSensor;
END_TYPE

PROGRAM ExampleArrayOfStruct
 VAR
 sensors : TSenzorsArray;
 i : INT;
 END_VAR

 FOR i := 1 TO NUM_SENSORS DO
 IF (sensors[i].pressure >= sensors[i].limits.low) AND
 (sensors[i].pressure <= sensors[i].limits.high)
 THEN
 sensors[i].status := TRUE;
 ELSE
 sensors[i].status := FALSE;
 END_IF;
 END_FOR;
END_PROGRAM

30 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.2.4 Data type Pointer

The pointer data type is an addition to the IEC 61 131 standard. In other words, the pointer
is not defined by the mentioned standard and programs which will be using this data type cannot be
used for PLCs programmed in a different environment than Mosaic.

The reason why this data type is missing among the standardized data types is mainly pro-
gramming safety. An incorrectly used pointer can lead to a program crash, which is unacceptable
when controlling technologies. It is not possible to discover the error during program assembly or
during program operation. Experience from the C programming language, where pointers are often
used, show that a great part of incorrect program operations is caused by incorrect pointer handling.
On the other side, only a very few programs exist that are programmed in C and without pointers.
What does this mean? Pointers can be very good servants but very bad masters. The responsibility
for the correctness of a program using pointers lies only on the programmer, because methods help-
ing him discover errors (compiler, type control, run-time checks, etc.) are useless regarding point-
ers. An advantage of pointers is their higher effectivity of programming. In many cases pointers en-
able shorter and quicker programs, mainly if structures, arrays and their combinations are used.
And the last reason for using pointers is the fact that some problems can be solved only by using
pointers.

A pointer is really a pointer to a variable that can be of the elementary or derived type. The
declaration of pointers is done using the keyword PTR_TO followed by the data type name to
which the pointer is pointing to. The pointer data type can be used everywhere, where an elemen-
tary data type can be used. POUs do not support pointers.

The pointer variable type contains an address to another variable. A pointer can be worked
with in two ways. First it is possible to change its value (increase, decrease, etc.) and so change the
variable to which the pointer will point to. Second it is possible to work with the variable value to
which the pointer is pointing to. The first mentioned operation is called pointer arithmetics, the sec-
ond is called pointer dereference.

Pointer arithmetics
The first operation that a program has to do with a pointer is to fill the variable’s address to

which the pointer will be pointing to. The implicit initialization of the pointer data type is -1 which
means that the pointer does not point to any variable. This is also the only case that can be discov-
ered by the run-time check and identified as an error.

The initialization of a pointer, i.e. its filling with the address of the variable it will be show-
ing to, is done using the system function ADR(). The parameter of this function is the name of the
variable, we want the pointer to be filled with. For example myPtr := ADR(myVar) fills the
myPtr pointer with the myVar variable’s address; i.e. the myPtr pointer will point to the variable
myVar.

The pointer data type can be used for arithmetic operations with the purpose of changing the
address of a variable. The PTR_TO type can be combined with data types ANY_INT. If the myVar
variable is placed in the memory on the address %MB100 and the yourVar variable will be on the
address %MB101, then the expression myPtr := myPtr + 1 will increase the value of the point-
er by 1, so the pointer will be pointing to the yourVar variable(instead of the original myVar vari-
able). Off course only under the condition that both variables are of a data type which uses a single
byte in the memory. In case of the PTR_TO type the arithmetics function only byte-wise, which
means that after adding the value 15, the pointer will be pointing to a variable 15 bytes further up
the memory.

31 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Pointer dereference
Pointer dereference is an operation that enables to work with a variable to which a pointer is

pointing to. The sing ^ is used for dereference. The expression value := myPtr^ fills the value
variable with the value of the myVar variable (off course under the condition that myPtr points to
myVar and the value variable is of the same data type as the myVar variable).

Example 14 Pointers

VAR_GLOBAL
 arrayINT : ARRAY[0..10] OF INT;
END_VAR

PROGRAM ExamplePtr
 VAR
 intPTR : PTR_TO INT;
 varINT : INT;
 END_VAR

 intPTR := ADR(arrayINT[0]); // init ptr
 intPTR^ := 11; // arrayINT[0] := 11;
 intPTR := intPTR + sizeof(INT); // ptr to next item
 intPTR^ := 22; // arrayINT[1] := 22;
 intPTR := intPTR + sizeof(INT); // ptr to next item
 varINT := intPTR^; // varINT := arrayINT[2];
END_PROGRAM

Example 3.12 uses the function sizeof()for increasing the address to which the intPTR
is pointing to. This function returns the number of bytes of the given data type or variable.

Another example shows how easy it is to make a mistake when working with pointers. The
program is the same as in example 3.12 only with a different intPTR pointer initialization. While
the initialization in the first case is executed in every cycle by the statement intPTR := ADR(ar-
rayINT[0]), the pointer initialization in the second example is executed already in the declaration
of the variable intPTR : PTR_TO INT := ADR(arrayINT[0]). That causes that the first program
cycle, after system restart, will be correct but the pointer in the second cycle will start with an ele-
ment address of arrayINT[2] instead of arrayINT[0]. During a cyclic execution of the pro-
gram this means that the program in example 3.13 will rewrite the whole variable memory in a very
short time with INT#11 and INT#22 values, which is something we surely do not want. Please re-
member that it is necessary to take extra care when working with pointers.

Example 15 Incorrect initialization of pointer

VAR_GLOBAL
 arrayINT : ARRAY[0..10] OF INT;
END_VAR

PROGRAM ExamplePtrErr
 VAR
 intPTR : PTR_TO INT := ADR(arrayINT[0]);
 varINT : INT;
 END_VAR

32 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

 // for 1st cycle only !!!
 intPTR^ := 11; // arrayINT[0] := 11;
 intPTR := intPTR + sizeof(INT); // ptr to next item
 intPTR^ := 22; // arrayINT[1] := 22;
 intPTR := intPTR + sizeof(INT); // ptr to next item
 varINT := intPTR^; // varINT := arrayINT[2];
END_PROGRAM

3.3 Variables

According to IEC 61 131-3 variables are strictly speaking are means for identification of
data objects, the content of which can change, i.e. data associated with inputs, output or PLC
memory. A variable can be declared by one of the elementary data types or by some of the user (de-
rived) data types.

 In this way programming according to IEC 61 131-3 cam closer to standardly used
solutions. Instead of hardware addresses or symbols, the variables are defined in such a way as they
are used in higher programming languages. Variables are identifiers (names) assigned by the pro-
grammer, which are used, strictly speaking, to reserve a location in memory and they contain pro-
gram data values.

3.3.1 Variables declaration

Each programmable controller program organization unit (POU) type declaration (i.e., each
declaration of a program, function, or function block) shall contain at its beginning at least one
declaration part which specifies the types of the variables used in the POU. This declaration part
shall have the textual form of one of the keywords VAR, VAR_TEMP, VAR INPUT or
VAR_OUTPUT, followed in the case of VAR by the qualifier CONSTANT. Behind the keywords
follows one or more declarations of variables separated by semicolons and terminated by the
keyword END_VAR. The declaration of their initial values can be part of variable declaration.

Figure 7 Variables declaration according to IEC

33 TXV 003 21.02

VAR_GLOBAL RETAIN

Třída proměnné

Kvalifikátor

END_VAR

Konec deklarace

RemanentVar : BYTE := 56;

Jméno proměnné

Datový typ

Inicializační
hodnota

PLC programming according to the IEC 61 131-3 standard

The scope (range of validity) of the declarations contained in the declaration part is local to
the program organization unit in which the declaration part is contained. That is, the declared vari-
ables shall not be accessible to other POUs except by explicit argument passing via variables which
have been declared as input variables (VAR_UNIT) or output variables (VAR_OUTPUT) of this
units. The one exception to this rule is the case of variables which have been declared to be global.
Such variables are defined outside the declarations of all POUs and begin with the keyword
VAR_GLOBAL. Behind the keyword VAR_GLOBAL can be optionally put the RETAIN or CON-
STANT qualifier.

3.3.1.1 Variable classes

Variable classes determine the use and scope of variables. It is possible to divide variables
accordingly:

 global variables
 VAR_GLOBAL - not backed up variables
 VAR_GLOBAL RETAIN - backed up variables
 VAR_GLOBAL CONSTANT - constants
 VAR_EXTERNAL - external variables

 local variables
 VAR - local variables
 VAR_TEMP - temporary variables

 variables for handing over parameters
 VAR_INPUT - input variables
 VAR_OUTPUT - output variables
 VAR_IN_OUT - input-output

34 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table 10 Variable type

Variable type Meaning Designation
VAR_INPUT input For passing input parameters into POU

These variables are visible from other POUs and they
are set from them, too.

VAR_OUTPUT output For passing of output variables from POU
These variables are visible from other POUs, where
only their reading can be performed.
The change of the value of these variables can be
performed within the POU only, in which the variables
were declared.

VAR_IN_OUT input / output For indirect access to variables outside the POU
Variables can be read and their value can be changed
inside as well as outside the POU.

VAR_EXTERNAL global Variables defined in PLC mnemocode
VAR_GLOBAL global Variables available from all POUs.

VAR local Auxiliary variables used within POU
They are not "visible" from another POUs, which
means they can be read or their value can be changed
within the POU only, in which they are declared.
These variables can store a value also between
individual calls of the POU in question.

VAR_TEMP local Auxiliary variables used within POU
They are not "visible" from another POUs.
These variables are created during the input into the
POU and disappear after the POU is ended - thus they
cannot store any value between two calls of the POU.

35 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.11 Use of variables for particular POUs

Variable type PROGRAM FUNCTION_BLOCK FUNCTION Outside
the POU

VAR_INPUT yes yes yes no
VAR_OUTPUT yes yes no no
VAR_IN_OUT yes yes yes no
VAR_EXTERNAL yes yes yes no
VAR_GLOBAL no no no yes
VAR yes yes yes no
VAR_TEMP yes yes yes no

3.3.1.2 Qualifiers in variables declaration

Qualifiers allow defining additional features of declared variables. The keyword for a quali-
fier begins with VAR. In variables declarations, the following qualifiers can be used:

• RETAIN – retained variables (variables retaining their value also after the PLC power sup-
ply is OFF);

• CONSTANT – constant value (the value of an variable cannot be changed)
• R_EDGE – variable rising edge
• F_EDGE – variable falling edge

Table.12 Usage of qualifiers in variables declaration

Variable type Meaning RETAIN CONSTANT R_EDGE
F_EDGE

VAR local no yes no
VAR_INPUT input no no yes

VAR_OUTPUT output no no no
VAR_IN_OUT input / output no no no

VAR_EXTERNAL global no no no
VAR_GLOBAL global yes yes no

VAR_TEMP local no no no

36 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.3.2 Global variables

From the point of view of availability, variables can be divided into global and local.

Global variables are such variables that are available to all POUs. Their definition begins
with the keyword VAR_GLOBAL and it is not mentioned inside any POU which is shown by exam-
ple 3.14. Global variables can be placed to a specific address within the PLC memory using the
keyword AT in the variable declaration. If the AT keyword is missing, the compiler assigns the
needed space automatically.

If the qualifier CONSTANT is stated in the declaration, then the variable definition has a fixed
value by the declaration and it cannot be changed by the program. So they are not variables to all
intents and purposes but rather constants. And if they are also of an elementary data type, the com-
piler will not assign any location in the memory to them, it will only use the corresponding constant
in the expressions.

Variables from the VAR_EXTERNAL class can be global and local. If the variable declaration
of this class is stated inside the POU, then it is a local variable, if not it is a global variable.

Example 16 Declaration of global variables

program in mnemocode:
#reg word mask ; variable declaration in mnemocode
P 0
 ld $1111
 wr mask
E 0

Program in ST language:
VAR_EXTERNAL
 mask : WORD; // link to variable in mnemocode
END_VAR

VAR_GLOBAL RETAIN
 maxTemp : REAL; // backed up variable
END_VAR

VAR_GLOBAL CONSTANT
 PI : REAL := 3.14159; // constant
END_VAR

VAR_GLOBAL
 globalFlag : BOOL;
 suma : DINT := 0;
 temp AT %XF10 : REAL; // temperature
 minute AT %S7 : USINT;
END_VAR

PROGRAM ExampleGlobal

 globalFlag := mask = 16#1111; // true
 maxTemp := MAX(IN1 := temp, IN2 := maxTemp);
END_PROGRAM

37 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.3.3 Local variables

Local variables are declared within the POU and their validity and visibility is limited to
the POU in which they are declared in. It is not possible to use them from the other POUs. The dec-
laration of local variables begins with the keywords VAR or VAR_TEMP.

Variables declared in the VAR class are so called static variables. These variables are as-
signed a fixed place in the variables memory by the compiler; this place does not move during pro-
gram execution. That means that the more variables in the VAR class are defined, the more memory
will be occupied. Another important feature of the VAR class variables is that their value is kept in
memory during two POU callings in which they are declared in.

Variables declared in the VAR_TEMP class are variables which are dynamically created,
when the POU starts calculating with the affected declaration. When the POU finished the calcula-
tion, the dynamically assigned memory is freed and the VAR_TEMP class variables are deleted. This
means that declarations of VAR_TEMP class variables do not affect memory consumption. Such
variables cannot keep values between tow POU calls, because after the POU finishes, they stop to
exist.

The difference between the VAR and VAR_TEMP class variables is also in their initialization.
The VAR class variables are initialized only when a system is restarted while the VAR_TEMP class
variables are initialized every time they are assigned a memory location (i.e. after each calculation
start of the POU). The following features can be seen in the following example.

Example 17 Declaration of local variables

PROGRAM ExampleLocal
 VAR
 staticCounter : UINT;
 staticVector : ARRAY[1..100] OF BYTE;
 END_VAR
 VAR_TEMP
 tempCounter : UINT;
 tempVector : ARRAY[1..100] OF BYTE;
 END_VAR

 staticCounter := staticCounter + 1;
 tempCounter := tempCounter + 1;
END_PROGRAM

The value of the local variable staticCounter will increase itself by repeated callings of
the ExampleLocal program, because every calling starts a calculation with the value static-
Counter from the last calling. In contrast to this the value of the tempCounter variable will be at
the end of the ExampleLocal program always 1, independently to the number of callings of the
program, because this variable is created and initialized with the value 0 on every calling made by
the ExampleLocal program.

On the example 3.15, it is possible to show the differences in memory usage. The stat-
icVector variables occupies 100 bytes in the variables memory while the tempVector variable
does not affect the usage of the memory.

38 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.3.4 Input and output variables

Input and output variables are used for handing over parameters between POUs. Using such
variables, we can define input and output interfaces of the POUs.

For exchanging parameters towards the POUs the VAR_INPUT class variables are used;
they are the input variables. For exchanging parameters from the POUs the VAR_OUTPUT class
variables are used; they are the output variables. If we imagine an e.g. function block as an inte-
grated circuit, then the VAR_INPUT variables will represent the input signals of the circuit and the
VAR_OUTPUT variables will represent the output signals of the circuit.

The definition of BOOL type variables in the VAR_INPUT class can be widened by using R_EDGE
and F_EDGE qualifiers which enable detecting the rising or falling edge of a variable. Variables de-
fined by a R_EDGE qualifier have true type values only if the value of a variable changes from
false to true. Such a variable is also the in variable in example 3.16. The FB_EdgeCounter
function block in this example will be counting rising edges (changes from a false value to true val-
ue) of the in input variable.

Example 18 Detection of rising edge of a input variable

FUNCTION_BLOCK FB_EdgeCounter
 VAR_INPUT
 in : BOOL R_EDGE;
 END_VAR
 VAR_OUTPUT
 count : UDINT;
 END_VAR

 IF in THEN count := count + 1; END_IF;
END_FUNCTION_BLOCK

PROGRAM ExampleInputEdge
 VAR_EXTERNAL
 AT %X0.0 : BOOL;
 END_VAR
 VAR
 edgeCounter : FB_EdgeCounter;
 howMany : UDINT;
 END_VAR

 edgeCounter(in := %X0.0, count => howMany);
END_PROGRAM

Parameters sent via input or output variables are handed over via values. In other words, this
means that when the POU is calling, it is necessary to hand over the values of the input variables.
After returning from the POU, it is necessary to hand over the values of the output variables.

VAR_IN_OUT class variables can be used simultaneously as input and output variables. Pa-
rameters handed over to the POU through VAR_IN_OUT class variables are not handed over via val-

39 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

ues, but via references. That means that when the POU is calling, the variable address hands over
the place of the value, which enables to use the value as needed as an input or output variable.

The difference between handing over parameters via value and reference can be seen in ex-
ample 3.17.

Example 19 Difference between using VAR_INPUT and VAR_IN_OUT variables

TYPE
 TMyUsintArray : ARRAY[1..100] OF USINT;
END_TYPE

FUNCTION Suma1 : USINT
 VAR_INPUT
 vector : TMyUsintArray;
 length : INT;
 END_VAR
 VAR
 i : INT;
 tmp : USINT := 0;
 END_VAR

 FOR i := 1 TO length DO tmp := tmp + vector[i]; END_FOR;
 Suma1 := tmp;
END_FUNCTION

FUNCTION Suma2 : USINT
 VAR_IN_OUT
 vector : TMyUsintArray;
 END_VAR
 VAR_INPUT
 length : INT;
 END_VAR
 VAR
 i : INT;
 tmp : USINT := 0;
 END_VAR

 FOR i := 1 TO length DO tmp := tmp + vector[i]; END_FOR;
 Suma2 := tmp;
END_FUNCTION

PROGRAM ExampleVarInOut
 VAR
 buffer : TMyUsintArray := [1,2,3,4,5,6,7,8,9,10];
 result1,
 result2 : USINT;
 END_VAR

 result1 := Suma1(buffer, 10); // 55
 result2 := Suma2(buffer, 10); // 55

END_PROGRAM

The task of this example was to create a function that would calculate the sum of the input
number of USINT array type elements.

The Suma1 function uses vector as an input variable of the VAR_INPUT class, which
means, that when calling this function, all values of all elements of the buffer array must be sent

40 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

to the vector input variable. In this case it means 100 bytes of data. The calculation is done above
the vector variable.

The Suma2 function has the vector variable defined in the VAR_IN_OUT class and so, dur-
ing calling this function, it sends the buffer variable’s address instead of the values of all ele-
ments. This means only 4 bytes instead of 100 bytes in case of the first case. The vector input
variable contains the address of the buffer variable and the calculation is done above the buffer
variable which is indirectly addressed to via the vector variable.

3.3.5 Simple-element and multi-element variables

From the point of view of data types, the variables can be divided into simple-element and
multi-element variables. Simple element variables are of the basic type. Multi-element variables are
of the types array and structure. The IEC 61 131-3 standard sees these variables as multi-element
variables.

3.3.5.1 Simple-element variables

A simple-element variable is defined as a variable representing a single data element of one
of the elementary data types or user data types (value enumeration list, subrange or a type recurs-
ively derived that you can come recursively back to the value enumeration list or subranges or ele-
mentary data types). Examples of simple-element variables are stated in example 3.18.

Example 20 Simple-element variables

TYPE
 TColor : (white, red, gree, black);
 TMyInt : INT := 100;
END_TYPE

VAR_GLOBAL
 basicColor : TColor := red;
 lunchTime : TIME := TIME#12:00:00;
END_VAR

PROGRAM ExapleSimpleVar
 VAR
 tmpBool : BOOL;
 count1 : INT;
 count2 : TMyInt;
 currentTime : TIME;
 END_VAR
 VAR_TEMP
 count3 : REAL := 100.0;
 END_VAR

END_PROGRAM

41 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.3.5.2 Array

An array is a collection of data elements of the same data type referenced by one or more
subscripts enclosed in brackets and separated by commas. A subscript shall be an expression of the
types contained in generic type ANY_INT. The maximum number of subscripts (array dimension)
is 4 and the maximum range of subscripts has to correspond to type INT.

Variables of the array type can be defined in two different ways. First, the derived array data
type can be defined and then the variable of this type is created. This is the case of rxMessage
variable in example 3.19. Or second, the array can be defined directly in the variable declaration,
see sintArray variable in the same example. Rules stated in chapter 3.2.3.2 apply to both declara-
tion types. Also the manner of entering the initialization values is the same.

Example 21 Variables array

TYPE
 TMessage : ARRAY[0..99] OF BYTE;
END_TYPE

VAR_GLOBAL
 delay : ARRAY [1..5] OF TIME := [TIME#1h,
 T#10ms,
 time#3h_20m_15s,
 t#15h5m10ms,
 T#3d];
END_VAR

PROGRAM ExampleArrayVar
 VAR
 rxMessage : TMessage;
 txMessage : TMessage;
 sintArray : ARRAY [1..2,1..4] OF SINT := [11, 12, 13, 14,
 21, 22, 23, 24];
 END_VAR
 VAR_TEMP
 pause : TIME;
 element : SINT;
 END_VAR

 pause := delay[3]; // 3h 20m 15s
 element := sintArray[2, 3]; // 23
END_PROGRAM

42 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.3.5.3 Structures

 A structured variable is a variable which is declared to be of a type which has previously
been specified to be a data structure, i.e., a data type consisting of a collection of named elements.
The declaration of the derived type Structure is described in chapter 3.2.3.3.

The direct declaration of a structure is not supported in the variables declaration.

In example 3.20 the variable pressure is defined, which is of the Tmeasure structure
type. Another structure, the Tlimit, is used in the definition of this type. The example also shows
the initialization of all elements of the pressure variable, including immersed structures. It can
also be seen in the example, how can the program access each element in the structure variable (e.g.
presure.lim.low). The AT %XF10 construction is explained in the following chapter.

Example 22 Structured variable

TYPE
 TLimit :
 STRUCT
 low, high : REAL;
 END_STRUCT;

 TMeasure :
 STRUCT
 lim : TLimit;
 value : REAL;
 failure : BOOL;
 END_STRUCT;
END_TYPE

VAR_GLOBAL
 AT %XF10 : REAL;
 presure : TMeasure := (lim := (low := 10, high := 100.0),
 value := 0,
 failure := false);
END_VAR

PROGRAM ExampleStructVar

 presure.value := %XF10; // input sensor
 IF presure.value < presure.lim.low OR
 presure.value > presure.lim.high
 THEN
 presure.failure := TRUE;
 ELSE
 presure.failure := FALSE;
 END_IF;
END_PROGRAM

43 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.3.6 Location of variables in the PLC memory

The compiler allocates variables in the PLC memory automatically. If it is necessary to
locate a variable on a specific address, it is possible to specify such address in the declaration of
variables using the keyword AT followed by the variable address.

Expressing the variable address

A special “%“ sign is used for expressing the variable address; the location prefix and size
prefix. These signs are followed by one or more characters of the UINT type separated by full
stops.

Figure 8 Direct address to PLC memory according to IEC

Figure 9 Marking PLC memory according to IEC

44 TXV 003 21.02

% M X nnnn

Umístění

I Input
Q Output
M Memory

Velikost

X BOOL
B BYTE
W WORD
D DWORD

Přístup
na absolutní
adresu

Index v poli
proměnných

7 6 5 4 3 2 1 0

%MB0
%MB1
%MB2
%MB3
%MB4
%MB5
%MB6
%MB7
%MB8

%MW0

%MW1

%MW2

%MW3

%MD0

%MD1
34
12

%MW2 := 16#1234%MX53

%MX6

%MD2
%MW4

PLC programming according to the IEC 61 131-3 standard

Direct addresses in PLC programs can be expressed in a traditional way used in the Mosaic
programming language. The compiler automatically detects which manner of expression was used.

Figure 10 Traditional marking of direct addreses of variables in a PLC

Figure 11 Traditional marking of PLC memory within the Mosaic environment

Expressions %MB10 (according to IEC) and %R10 (traditional) mark the same location in the
memory. The expression %RW152.9 marks the ninth bit of a WORD size variable located in the mem-
ory on the address 152. By variables which occupy more than one byte in the memory, the least im-
portant byte is allocated to the lowest address and vice versa (Little Endian).

45 TXV 003 21.02

7 6 5 4 3 2 1 0

%R0
%R1
%R2
%R3
%R4
%R5
%R6
%R7
%R8

%RW0

%RW2

%RW4

%RW6

%RW1

%RW3

%RW5

%RW7

%RL0

%RL4

%RL1

%RL5

%RL2

%RL634
12

%RW7 := 16#1234%R6.5

% R W nnnn . m

Umístění

X Input
Y Output
S System
R Register

Velikost

.m BIT
 BYTE
W WORD
L LONG
F FLOAT
D DOUBLE

Přístup
na absolutní
adresu

Bytová
adresa

Číslo
bitu

PLC programming according to the IEC 61 131-3 standard

The specification of a direct address in the variables declaration can be used only in
VAR_GLOBAL and VAR_EXTERNAL classes. The keyword AT which introduces the direct address
variable is located between the variable name and data type specification.

Variables that have a stated direct address without the name of the variable, in their declara-
tion, are named represented variables. When the program accesses these variables, their addresses
are used instead of their names. This can be seen by the variables %MB121 and %R122 in example
3.21.

Example 23 Address specification in variables declaration

VAR_GLOBAL
 SymbolicVar AT %MB120 : USINT;
 AT %MB121 : USINT;
 AT %R122 : USINT := 242;
 counterOut AT %Y0.0 : BOOL; // PLC output
END_VAR

PROGRAM ExampleDirectVar
 VAR_EXTERNAL
 AT %S6 : USINT; // second counter
 AT %X0.0, AT %X0.1 : BOOL; // PLC input
 END_VAR
 VAR
 counter : CTU;
 END_VAR

 SymbolicVar := %MB121 + %R122;
 counter(CU := %X0.0, R := %X0.1, PV := 100, Q => counterOut);
END_PROGRAM

Direct addresses are used for declaring such variables, which location should not be
changed during program editing. An example can be variables intended for visualization programs
or variables which represent PLC inputs or outputs.

If an address is not stated in the variable declaration, the compiler will locate the symbolic
variable into the PLC memory (assign an address). The compiler will also ensure that the variables
do not overlap each other in the memory.

By directly represented variables, the programmer is the one who decides where the vari-
ables will be located in the memory and he has to ensure that no unwanted collision of variables oc-
curs (their addresses overlap in the memory).

3.3.7 Variable initialization

The programming model according to the IEC 61 131 standard ensures that every variable
gets an assigned value (initialization value) upon control system restart. This value can be:

 A value which the variable had at the moment of configuration element stop –
typically during control system failure (retained value)

 Initial values specified by the user (stated in variable declaration)
 Predefined (default) initial values according to data type

46 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

The user can declare that a variable is to be retentive (this means its last value will be re-
tained) by using the RETAIN qualifier. This qualifier can be used for global variables only.

It is possible to specify, within the frame of the declaration, variables using variable values.

If the initialization value is not stated in the declaration, then the variable will be initialized using
the initial value of the used data type.

Initial variable value

The initial value of a variable after system restart shall be determined according to the fol-
lowing rules:

 If the starting operation is a "warm restart", the initial values of retentive variables
shall be their retained values.

 If the operation is a "cold restart", the initial values of retentive variables shall be the
user-specified initial values.

 Non-retained variables shall be initialized to the user-specified initial values, or to
the default value for the associated data type of any variable for which no initial
value is specified by the user.

 Variables which represent inputs of the programmable control system shall be
initialized in an implementation-dependent manner.

 Variables representing system outputs shall be initialized with the value 0, which
corresponds to the “no power supply” state

By VAR_EXTERNAL class variables, the initial values cannot be assigned, because they are
really only links to variables which are declared on a different place in the program. It is not also
possible to declare initialization by VAR_IN_OUT class variables, because these variables contain
only pointers to variables but not variables themselves.

Example 24 Variable initialization

TYPE
 MY_REAL : REAL := 100.0;
END_TYPE

VAR_GLOBAL RETAIN
 remanentVar1 : BYTE;
 remanentVar2 : BYTE := 56;
END_VAR

PROGRAM ExampleInitVar
 VAR
 localVar1 : REAL;
 localVar2 : REAL := 12.5;
 localVar3 : MY_REAL;
 END_VAR
 VAR_TEMP
 tempVar1 : BYTE;
 tempVar2 : REAL;
 END_VAR

 tempVar1 := remanentVar1 AND remanentVar2;
 tempVar2 := localVar1 + localVar2;
END_PROGRAM

47 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

During a cold system restart, the backed up variable remanentVar1 will have a initializa-
tion value of 0 according to the initialization value of the BYTE data type. The variable rema-
nentVar2 will have a initialization value of 56, because this value is preset in the variables decla-
ration.

During a warm system restart, the variables remanentVar1 and remanentVar2 will have
such values, that these variables had when the system was switched off.

The variable localVar1 will independently on the type of restart have a initialization value
of 0, because the initialization value is not stated in the variables and so a predefined initialization
value according to the REAL data type will be used. The variable localVar2 will after restart al-
ways have an initialization value of 12.5. The variable localVar3 will after restart have an ini-
tialization value of 100.0, because it is the initialization value derived from the MY_REAL data
type.

3.4 Program organization units

Program Organization Units (POUs) are the function, function block and program.
These program organization units can be delivered by the manufacturer, or programmed by

the user.
Program organization units are not recursive; that is, the invocation of a program organiza-

tion unit must not cause the invocation of another program organization unit of the same type!
In other words, the POU cannot call itself.

3.4.1 Function

For the purposes of programmable controller programming languages, a function is defined
as a program organization unit which, when executed, yields exactly one data element, which is
considered to be the function result, and arbitrarily many additional output elements (the function
result can be multi-valued, e.g., an array or structure). The invocation of a function can be used in
textual languages as an operand in an expression.

Functions contain no internal state information, i.e., invocation of a function with the same
arguments (input parameters) shall always yield the same values (output).

Function declaration

Function declaration contains these elements

 Key words FUNCTION followed by the name of the declared function, colon and
value data type, which the function will have to return

 A VAR_INPUT definition, specifying the names and types of the function's input
variables

 Definition of local VAR variables or VAR_TEMP, specifying the names and types of
internal variable functions

 A VAR CONSTANT definition
 The function body stated in the ST language. The function body specifies operations

that should be executed above the input parameters for the purporse of assigning one

48 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

or more variable values, which have the same name as the function and which
represent the return value of the function

 The terminating keyword END_FUNCTION.

Function calling

It is possible to call a function stating the function followed by the handed over parameters
in round brackets in the ST programming language. The number of data types of handed over pa-
rameters must correspond to the input variables in the function definition. If the names of the func-
tion input variables are not stated in the calling, then the order of the parameters must exactly corre-
spond to the order of input variables in the function definition. If the parameters are assigned to the
names of the input parameters (formal call), then the order of parameters during calling is not im-
portant.

Example 25 Function definition and its calling in ST

FUNCTION MyFunction : REAL
 VAR_INPUT
 r, h : REAL;
 END_VAR
 VAR CONSTANT
 PI : REAL := 3.14159;
 END_VAR

 IF r > 0.0 AND h > 0.0
 THEN MyFunction := PI * r**2 * h;
 ELSE MyFunction := 0.0;
 END_IF;
END_FUNCTION

PROGRAM ExampleFunction
 VAR
 v1, v2 : REAL;
 END_VAR

 v1 := MyFunction(h := 2.0, r := 1.0);
 v2 := MyFunction(1.0, 2.0);
END_PROGRAM

The MyFunction function in example 3.23 has two input variables defined r and h of the
REAL type. The return value of this function is of the REAL type and is represented by the name
MyFunction. In the calling of this function v1 := MyFunction(h := 2.0, r := 1.0) the
names of the input variables are stated. In this case the order of input parameters in brackets is not
important. The calling v2 := MyFunction(1.0, 2.0) does not contain names of input vari-
ables and so the input parameters are expected to be in such an order, in which the input variables
are declared in the function declaration. Both callings showed in the example are equal and give the
same result.

49 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.4.1.1 Standard functions

Standard functions usable in all programming languages for PLCs are described in detail in
the IEC 61 131-3 standard, section 2.5.1.5. A summary of standard functions that are supported by
the Mosaic environment compiler is shown in this sectio

Function Overloading

A function or operation is said to be overloaded when it can operate on input data elements
of various types within a generic type designator. For instance, an overloaded addition function on
generic type ANY_NUM can operate on data of types LREAL, REAL, DINT, INT, and SINT.

When a programmable control system supports an overloaded standard function, this func-
tion can apply to all data types of the given generic type which are supported by that system.

The information on what functions are overloaded are specified below. User-defined func-
tions cannot be overloaded.

If all formal input parameters of a standard function are of the same generic type, then also
all current parameters shall be of the same type. If necessary, functions for type conversion can be
used for this purpose. The output value of a function will then be of the same type as current out-
puts.

Extensible functions

Some standard functions are extensible, that is they are allowed to have a variable number
of inputs, and shall be considered as applying the indicated operation to all its inputs. The maxim-
um number of inputs of an extensible function is not limited.

Standard function division

Standard functions are divided into several basic groups:

• Functions for type conversion
• Numerical functions
• numerical functions of one variable
• arithmetic functions of more variables
• Bit string functions
• bit rotation
• Boolean functions
• Selection functions
• Comparison functions
• Character string functions
• Functions of time date types
• Functions of enumerated data types

The column with the name of Ovr in the following tables specifies whether a function is
overloaded. The column with the name of Ext specifies whether the given function is extensible.
See the Annex for the correct specification of standard functions.

50 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.13 Standard functions, type conversion group
Standard functions, type conversion group

Function name Input data
type

Output data
type Function description Ovr Ext

…_TO_… ANY ANY Conversion of data
type in the first posi-
tion to data type spe-
cified on the second

position

yes no

TRUNC ANY_REAL ANY_INT „Truncation“ yes no

Table.14 Standard functions, one variable numerical function group

Standard functions, one variable numerical function group

Functi-
on name

Input / Output data type Function description Ovr Ext

ABS ANY_NUM / ANY_NUM Absolute value ano ne
SQRT ANY_REAL / ANY_REAL Square root ano ne

LN ANY_REAL / ANY_REAL Natural logarithm ano ne
LOG ANY_REAL / ANY_REAL Logarithm base 10 ano ne
EXP ANY_REAL / ANY_REAL Natural exponential function ano ne
SIN ANY_REAL / ANY_REAL Sine of input angle in radians ano ne
COS ANY_REAL / ANY_REAL Cosine of input angle in radians ano ne
TAN ANY_REAL / ANY_REAL Tangent of input angle in radians ano ne
ASIN ANY_REAL / ANY_REAL Principal arc sine ano ne
ACOS ANY_REAL / ANY_REAL Principal arc cosine ano ne
ATAN ANY_REAL / ANY_REAL Principal arc tangent ano ne

51 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

52 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.15 Standard functions, numerical function group - arithmetic functions of more
variables

Standard functions, numerical function group - arithmetic functions of more variables

Function
name

Input / Output data type Symbol Function description Ovr Ext

ADD ANY_NUM, .. ANY_NUM
/ ANY_NUM

+ Sum
 OUT:=IN1+ IN2+…+INn

yes yes

MUL ANY_NUM, .. ANY_NUM
/ ANY_NUM

* Multiplication
 OUT:=IN1* IN2*…*INn

yes yes

SUB ANY_NUM, ANY_NUM
/ ANY_NUM

- Subtraction
 OUT:=IN1-IN2

yes no

DIV ANY_NUM, ANY_NUM
/ ANY_NUM

/ Division
 OUT:=IN1/IN2

yes no

MOD ANY_NUM, ANY_NUM
/ ANY_NUM

Modulo
 OUT:=IN1 modulo IN2

yes no

EXPT ANY_REAL, ANY_NUM
/ ANY_REAL

** Exponetiation
OUT:=IN1**IN2

yes no

MOVE ANY_NUM
/ ANY_NUM

:= Movement, assignment
OUT:=IN

yes no

53 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.16 Standard functions, bit string function group - bit rotation

Standard functions, bit string function group - bit rotation

Function name Input / Output
data type

Function description Ovr Ext

SHL ANY_BIT, N
/ ANY_BIT

Shift left
OUT := IN left shifted by N bits,

zero-filled on right

yes no

SHR ANY_BIT, N
 / ANY_BIT

Shift right
OUT := IN right shifted by N bits,

zero-filled on left

yes no

ROR ANY_BIT, N
/ ANY_BIT

Rotate right
OUT := IN right rotated by N bits,

circular

yes no

ROL ANY_BIT, N
 / ANY_BIT

Rotate left
OUT := IN left rotated by N bits,

circular

yes no

Table.17 Standard functions, bit string function group - Boolean functions

Standard functions, bit string function group - Boolean functions

Function
name

Input / Output data type Symbol Function description Ovr Ext

AND ANY_BIT, .. ANY_BIT /
ANY_BIT

& Logical product, „conjunc-
tion“,

OUT:=IN1& IN2&…&INn

yes yes

OR ANY_BIT, .. ANY_BIT /
ANY_BIT

Logical add, „or“, inclusive
OR,

OUT:=IN1 OR IN2 OR …
OR INn

yes yes

XOR ANY_BIT, .. ANY_BIT /
ANY_BIT

Exclusive add, „either - or“,
exclusive OR

OUT:=IN1 XOR IN2 XOR
… XOR INn

yes yes

NOT ANY_BIT / ANY_BIT Negation, „no“, yes no

54 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

OUT:=NOT IN1

Table.18 Standard functions, selection function group

Standard functions, selection function group

Function name Input / Output data
type

Function description Ovr Ext

SEL BOOL, ANY, ANY /
ANY

Binary selection

OUT := IN0 if G = 0

OUT := IN1 if G = 1

yes no

MAX ANY, .. ANY / ANY Maximum

OUT := MAX(IN1, IN2, .. INn)

yes yes

MIN ANY, .. ANY / ANY Minimum

OUT := MIN(IN1, IN2, .. INn)

yes yes

LIMIT MN, ANY, MX /
ANY

Limiter

OUT := MIN(MAX(IN, MN), MX)

yes no

Table.19 Standard functions - comparison function group

Standard functions, comparison function group

Function name Input / Output data
type

Function description Ovr Ext

GT ANY, .. ANY /
BOOL

Decreasing sequence

OUT:=(IN1> IN2)& (IN2>IN3)&…
&(INn-1>INn)

yes yes

GE ANY, .. ANY /
BOOL

Monotonic sequence (downwards)

OUT:=(IN1>= IN2)&
(IN2>=IN3)&…&(INn-1>=INn)

yes yes

EQ ANY, .. ANY /
BOOL

Equality

OUT:=(IN1= IN2)& (IN2=IN3)&…
&(INn-1=INn)

yes yes

LE ANY, .. ANY /
BOOL

Monotonic sequence (upwards)

OUT:=(IN1<= IN2)&

yes yes

55 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

(IN2<=IN3)&…&(INn-1<=INn)
LT ANY, .. ANY /

BOOL
Increasing sequence

OUT:=(IN1< IN2)& (IN2<IN3)&…
&(INn-1<INn)

yes yes

NE ANY, ANY / BOOL Inequality

OUT := (IN1<>IN2)

yes no

56 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.20 Standard functions, function group above character string

Standard functions, function group above character string

Function
name

Input / Output data
type

Function description Ovr Ext

LEN STRING / INT OUT := LEN(IN);
String length IN

no no

LEFT STRING, ANY_INT
/ STRING

OUT := LEFT(IN, L);
From the IN input string shift L

characters from the left into the output
string

yes no

RIGHT STRING, ANY_INT
 / STRING

OUT := RIGHT(IN, L);
From the IN input string shift L
characters from the right into the

output string

yes no

MID STRING, ANY_INT,
ANY_INT / STRING

OUT := MID(IN, L, P);
From the IN input string shift L
characters from the P numbered
character into the output string

yes no

CONCAT STRING, …. STRING
/STRING

OUT := CONCAT(IN1, IN2, ...);
Connection of individual input strings

into the output string

no yes

INSERT STRING, STRING,
ANY_INT / STRING

OUT := INSERT(IN1, IN2, P);
Insertion of string IN2 intor string IN1

beginning from the P numbered
position

yes yes

DELETE STRING, ANY_INT,
ANY_INT / STRING

OUT := DELETE(IN, L, P);
Deletion of L characters from the

string beginning from the P numbered
position

yes yes

REPLACE STRING, STRING,
ANY_INT, ANY_INT

/ STRING

OUT := REPLACE(IN1, IN2, L, P);
Replacement of L characters of the
IN1 string with characters from the

IN2 string, replacement from position
P

yes yes

FIND STRING, STRING /
INT

OUT := FIND(IN1, IN2);
Find position of first character of the
first occurance of string IN2 in string

IN1

yes yes

57 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.21 Standard functions, function group with date and time types

Standard functions, function group with date and time types

Function name IN1 IN2 OUT Ovr Ext
ADD_TIME TIME TIME TIME no no

ADD_TOD_TIME TIME_OF_DAY TIME TIME_OF_DAY no no
ADD_DT_TIME DATE_AND_TIME TIME DATE_AND_TIME no no

SUB_TIME TIME TIME TIME no no
SUB_DATE_DATE DATE DATE TIME no no
SUB_TOD_TIME TIME_OF_DAY TIME TIME_OF_DAY no no
SUB_TOD_TOD TIME_OF_DAY TOD TIME no no
SUB_DT_TIME DATE_AND_TIME TIME DATE_AND_TIME no no

SUB_DT_DT DATE_AND_TIME DT TIME
MULTIME TIME ANY_NUM TIME yes no
DIVTIME TIME ANY_NUM TIME yes no

CONCAT_DATE_TOD DATE TIME_OF_
DAY

DATE_AND_TIME no no

Type conversion function
DATE_AND_TIME_TO_TIME_OF_DAY, DAT_TO_TIME
DATE_AND_TIME_TO_DATE, DAT_TO_DATE

TOD … TIME_OF_DATE
DT … DATE_AND_TIME

58 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.4.2 Function blocks

For the purposes of programming according to IEC 61 131-3, a function block is a program
organization unit which, when executed, yields one or more values. Multiples, named instances
(copies) of a function block can be created. Each instance has an associated identifier (the instance
name), and a data structure containing its output and internal variables. All the values of the output
variables and the necessary internal variables of this data structure persist from one execution of the
function block to the next. Therefore, invocation of a function block with the same arguments (in-
put variables) need not always yield the same output values. The function block instances are cre-
ated by using a declared type of a function block within VAR or VAR_GLOBAL structure.

Any function block type which has already been declared can be used in the declaration of
another function block type or program type.

The scope of an instance of a function block is local to the program organization unit in
which it is instantiated (i.e. where its named copy is created), unless it is declared to be global.

The following example describes the procedure for the declaration of a function block, cre-
ation of its instance in a program and its invocation (execution).

Example 26 Function block in language ST

FUNCTION_BLOCK fbStartStop // FB declaration
 VAR_INPUT
 start : BOOL R_EDGE; // input variable
 stop : BOOL R_EDGE;
 END_VAR
 VAR_OUTPUT
 output : BOOL; // output variable
 END_VAR

 output := (output OR start) AND not stop;
END_FUNCTION_BLOCK

PROGRAM ExampleFB
 VAR
 StartStop : fbStartStop; // FB instance
 running : BOOL;
 END_VAR

 // invocation of function block instance
 StartStop(stop := FALSE, start := TRUE, output => running);

 // alternative FB invocation
 StartStop.start := TRUE;
 StartStop.stop := FALSE;
 StartStop();
 running := StartStop.output;

 // call with incomplete parameter list
 StartStop(start := TRUE);
 running := StartStop.output;

END_PROGRAM

59 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

The input and output variables of an instance of a function block can be represented as ele-
ments of the structure data type.

If an instance of a function block is global, it can be then also declared as retentive. In that
case, it is valid only for internal and output parameters of a function block.

From outside, only input and output parameters of a function block are accessible, that is,
the internal variables of a function block are hidden to the user of the function block.. The assign-
ment of a value from outside to an output variable of a function block is not allowed, this value is
assigned from inside by the function block itself. The assignment of a value of an input of a func-
tion block is allowed anywhere in a superior POU (typically it is part of invocation of a function
block).

Function block declaration

 The delimiting keywords for declaration of function blocks are
FUNCTION_BLOCK...END_FUNCTION_BLOCK.

 A function block can have more than one output parameter declared textually by the
construct VAR_OUTPUT.

 The values of variables which are passed to the function block via a VAR_IN_OUT
VAR_EXTERNAL construct can be modified from within the function block.

 In textual declarations, the R_EDGE and F_EDGE qualifiers can be used to indicate
an edge-detection function on Boolean inputs. This shall cause the implicit declara-
tion of a function block of type R_TRIG or F_TRIG, respectively, to perform the re-
quired edge detection. By doing this, the default declaration of the function block
R_TRIG or F_TRIG is invoked.

 The construct defined for initialization of functions is used also for declaration of the
default inputs of the function block and for the initial values of its internal and out-
put variables.

 By means of the structureVAR_IN_OUT, only variables can be passed to the function block
(function blocks instances cannot be passed). "Cascading" of VAR_IN_OUT constructions is per-
mitted.

3.4.2.1 Standard function blocks

Standard function blocks are defined in detail in the standard IEC 61 131-3 section 2.5.2.3.

Standard function blocks can be divided into the following groups (see Table 3.22).

• Bistable elements
• Edge detection
• Counters
• Timers

Standard function blocks are stored in library Standard_FBs_*.mlb.

60 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table.22 Overview of standard function blocks

Name of standard
function block

Name of input
parameter

Name of
output para-

meter

Description

Bistable elements (flip-flop circuits)
SR S1, R Q1 dominant setting (closing)
RS S, R1 Q1 dominant deletion (opening)

Edge detection
R_TRIG CLK Q Rising edge detection
F_TRIG CLK Q Falling edge detection

Counters
CTU CU, R, PV Q, CV Upward counter
CTD CD, LD, PV Q, CV Down counter

CTUD CU, CD, R, LD, PV QU, QD, CV Reversible counter

Timers
TP IN, PT Q, ET Pulse timer

TON (T--0) IN, PT Q, ET Timer ON - rising edge delay
TOF (0--T) IN, PT Q, ET Timer OFF - falling edge delay

The names, meaning and data types of variables used with standard function blocks:
Name of input / output Meaning Data type
R Resetting input BOOL
S Setting input BOOL
R1 Dominant resetting input BOOL
S1 Dominant setting input BOOL
Q Output (standard) BOOL
Q1 Output (only with flip-flop circuits) BOOL
CLK Clock (synchronization) signal BOOL
CU Input for up-counting BOOL
CD Input for down counting BOOL
LD Counter preset (initial value) INT
PV Counter preset (end value) INT
QD Output (down counter) BOOL
QU Output (upward counter) BOOL
CV Current value (counter) INT
IN Input (timer) BOOL
PT Timer preset TIME
ET Timer current value TIME
PDT Preset - date and time DT
CDT Current value - date and time DT

61 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.4.3 Programs

A program is defined in IEC 1131-1 as a "logical assembly of all the programming language ele-
ments and constructs necessary for the intended signal processing required for the control of a ma-
chine or process by a programmable control system."

In other words, functions and function blocks can be compared to subroutines, while a POU pro-
gram is the main program. The declaration and usage of programs is identical to the declaration and
usage of function blocks with the following differences:

• The delimiting keywords for program declarations are PROGRAM...END_PROGRAM.
• Programs can only be instantiated within resources, as defined in section 3.5, while func-

tion blocks can only be instantiated within programs or other function blocks.
• Programs can invocate functions and function blocks, while the invocation of programs

from functions or function blocks is not possible.

Example 27 POU Program in language ST
PROGRAM test
 VAR
 motor1 : fbMotor;
 motor2 : fbMotor;
 END_VAR
 motor1(startMotor := sb1, stopMotor := sb2,
 wye => km1, delta => km2);
 motor2(startMotor := sb3, stopMotor := sb4,
 Wye => km3, delta => km4);

END_PROGRAM

When writing a program in language ST, it should be realized that a POU program as well
as a function block is only "an instruction", in which a data structure and algorithms performed on
this data structure. To perform a defined program it is necessary to produce its instance and associ-
ate with a program to some of standard tasks, in which it then will be performed. These operations
are described in the following section.

62 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.5 Configuration elements

Configuration elements describe run-time features of programs and associate the execution
of programs with the concrete PLC hardware. They represent the top "rule" of the entire program
for a PLC.

When programming PLC systems the following configuration elements are used:

• Configuration – specifies a PLC system which shall execute all programmed POUs.
• Resource – specifies a processor module in a PLC which shall ensure program execution.
• Task – assigns a task (process) within which the relevant PROGRAM POU shall be ex-

ecuted.

Example 28

CONFIGURATION Plc1
 RESOURCE CPM
 TASK FreeWheeling(Number := 0);
 PROGRAM prg WITH FreeWheeling : test ();
 END_RESOURCE
END_CONFIGURATION

In the MOSAIC development environment all configuration elements are generated auto-
matically after the configuration dialogs have been filled-in.

3.5.1 Configuration

The configuration marks a PLC system which provides resources for executing the user
program. In other words, a configuration marks control systems for which a user program is
intended for.

Configuration declaration

• The keywords delimiting configuration are CONFIGURATION….END_ CONFIGURA-
TION

• The keyword CONFIGURATION is followed by configuration naming, in the MOSAIC de-
velopment environment the name of configuration corresponds to the name of project

• Configuration serves as a frame for Resource definition.

Example 29

CONFIGURATION configuration_name
 // resource declaration
END_CONFIGURATION

63 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.5.2 Resources

A resource defines which module within the PLC provides the calculation operation
for the user program execution. In the PLCs of TC700 series it is always the system pro-
cessor module.

Resource declaration

• The keywords delimiting a resource are RESOURCE….END_ RESOURCE.
• The keyword RESOURCE is followed by resource naming, in the MOSAIC development

environment it is "CPM" by default.
• Resources can be declared only within configuration.

Example 30

CONFIGURATION Plc1
 RESOURCE CPM
 // task declaration

 // assignment of programs to declared tasks
 END_RESOURCE
END_CONFIGURATION

3.5.3 Tasks

For the purposes of IEC 61 131-3, a task is defined as an execution control element which is
capable of invoking, either on a periodic basis or upon the occurrence of the rising edge of a spe-
cified Boolean variable, the execution of a set of program organization units. These can include
programs and function blocks declared within them. For the Mosaic environment, the term "task" is
identical with the conventionally used term "process".

Task declarations

• The keyword for a task is TASK
• The keyword TASK is followed by task naming.
• The task name is followed by task features, concretely with the number of the cor-

responding process.
• Tasks can be declared only within resource declaration.

Assigning of programs to tasks

• Program association with a concrete task begins with the keyword PROGRAM, by
which the instance of the given program is produced automatically.

• The keyword PROGRAM is followed by the program instance name.

64 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

• The keyword WITH specifies the task name to which the program shall be as-
sociated with.

• The name of the associated program including input and output parameters spe-
cification follows the colon.

• More programs can be associated with one task, the order of their execution within
the task corresponds to the order as they were associated.

• Program association can be declared only within the Resource declaration.

Example 31

CONFIGURATION Plc1
 RESOURCE CPM
 TASK FreeWheeling(Number := 0);
 PROGRAM prg WITH FreeWheeling : test ();
 END_RESOURCE
END_CONFIGURATION

65 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

4 TEXT LANGUAGES
The IEC 61 131-3 standard defines two text languages: IL, Instruction List and ST, Struc-

tured Text. Both these languages are supported by Mosaic compilers.

4.1 IL Instruction list language

The instruction list language is a low level assembler type language. This language belongs
to line orientated languages.

4.1.1 Instructions in IL

The list of instruction contains a sequence of instructions. Each instruction (statement) be-
gins on a new line and contains an operator which can be supported by a modifier and if it is neces-
sary for the specific instructions, it can also contain one or more operands separated by comas. In-
stead of operands, random data representations defined for literals can be used (see chapter 3.1.2)
and variables (see chapter 3.3).

Example 32 Program in IL

VAR_GLOBAL
 AT %X1.2 : BOOL;
 AT %Y2.0 : BOOL;
END_VAR

PROGRAM Example_IL
 VAR
 tmp1, tmp2 : BOOL;
 END_VAR

Step1: LD %X1.2 // load bit from PLC input
 AND tmp1 (* AND temporary variable *)
 ST %Y2.0 (* store to PLC output *)
 (* empty instruction *)
Step2: (* label *)
 LDN tmp2
END_PROGRAM

4.1.2 Operators, modifiers and operands

Standard operators, together with acceptable modifiers are stated Table. 4.1 to Table. 4.4. If
not stated differently in tables, the semantics of operators is as follows:

result := result OPERATOR operand

66 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

That means that the expression value, which is evaluated, is replaced by its new value,
which is processed from its current value using operators or operands, e.g. instruction AND %X1 is
interpreted as:

result:= result AND %X1

Comparing operators are interpreted with current values left from the comparing sign and
operand on the right from the comparing sign. The result of comparing is a bool variable, e.g. in-
struction LT %IW32 will have a bool result of “1”, if the current result is smaller than the value 32
of the input word; in all other cases the result will be a bool “0”

The N modifier marks the bool negation of the operand. E.g. instruction ORN %X1.5 is in-
terpreted as:

result:= result OR NOT %X1.5

The modifier of the left bracket (means that the operator should be “deffered”, i.e. the op-
erator execution deffered until the operator of the right bracket is found). E.g. instruction sequence

AND(%X1.1
OR %X1.3
)

is interpreted as:
result:= result AND (%X1.1 OR %X1.3)

Table 23 Operators and modifiers for ANY_BIT data type

ANY_BIT operators
Operator Modifier Function description

LD N Setting of current results to the value equal to the operand
AND N, (Bool AND
OR N, (Bool OR

XOR N, (Bool XOR
ST N Saves the current result on the location of the operand
S Sets a bool operand to “1”

The operation is executed only if the current result is a
bool “1”

R Deletes the bool operand to “0”
The operation is executed only if the current result is a
bool “1”

) Evaluation of a deffered operation

Some operators can have more modifiers added at once. On example operator AND it has
four different forms as seen on Table. 4.2.

67 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Table 24 AND operator modifiers

AND Bool AND
AND(Deferred bool AND
ANDN Bool AND with negated operand
ANDN(Deffered bool AND with negated result

Table 25 Operators and modifiers for ANY_NUM data type

ANY_NUM Operators
Operator Modifier Function description

LD N Setting of current results to the value equal to the operand
ST N Saves the current result on the location of the operand

ADD (Add operand to result
SUB (Deduct operand from result
MUL (Multiply result with operand
DIV (Divide result with operand
GT (Compare result > operand
GE (Compare result >= operand
EQ (Compare result = operand
NE (Compare result <> operand
LE (Compare result <= operand
LT (Compare result < operand
) Evaluation of last deffered operation

Table 26 Operators and modifiers for jumps and calls

ANY_BIT Operators
Operator Modifier Function description

JMP C, N Jump to identifier
CAL C, N Function block call

Func_name Function call
RET C, N Return from function or function block

The C modifier means, that the assigned instruction may only be executed in the case that
the currently evaluated result is a bool “1” (or bool “0”, if the operator has an N modifier added).

68 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

4.1.3 IL language user function definition

Example 33 IL language user function definition

FUNCTION UserFun : INT
 VAR_INPUT
 val : INT; // input value
 minVal : INT; // minimun
 maxVal : INT; // maximum
 END_VAR

 LD val // load input value
 GE minVal // test if val >= minVal
 JMPC NXT_TST // jump if OK
 LD minVal // low limit value
 JMP VAL_OK
NXT_TST:
 LD val // load input value
 GT maxVal // test if val > maxVal
 JMPCN VAL_OK // jump if not
 LD maxVal // high limit value
VAL_OK: ST UserFun // return value
END_FUNCTION

4.1.4 Calling function in IL language

Functions in the IL language are called by placing the function name into the operator array.
The current result is used as the first function parameter. If further parameters are needed, they are
entered into the operand array and are separated using a coma. The value returned by the function
after successfully executing the instruction RET or after achieving the physical end of the function
becomes the current value.

Other two possibilities for calling a relative function are the same as in the ST language.
The function name is followed by a list of parameters handed over into the function in round brack-
ets. The list of parameters can be with parameter names (formal call) or without (informal call).

In example 4.3 all described calls can be found. Called functions are user defined in exam-
ple 4.2.

Example 34 Function calling in IL

VAR_GLOBAL
 AT %YW10 : INT;
END_VAR

PROGRAM Example_IL1
 VAR
 count : INT;
 END_VAR

69 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

 // calling function, first parameter is current result
 LD Count
 UserFun 100, 1000
 ST %YW10
 // calling function using an informal call
 UserFun(Count, 100, 1000)
 ST %YW10
 // calling function using a formal call
 UserFun(val := Count, minVal := 100, maxVal := 1000)
 ST %YW10
END_PROGRAM

4.1.5 Calling a function block in IL

Function blocks in the IL language are called conditionally or unconditionally using the op-
erator CAL (Call). As shown in the following example, the function block can be called in two
ways.

The function block can be called by its name followed by a list of parameters (formal call).
A second possibility is saving the parameters into relevant memory locations of the function block
instance and then calling them (informal call). Both methods can be combined.

Example 35 Calling a function block in IL

VAR_GLOBAL
 in1 AT %X1.0 : BOOL;
 out1 AT %Y1.0 : BOOL;
END_VAR

PROGRAM Example_IL2
 VAR
 timer : TON;
 timerValue : TIME;
 END_VAR

 // calling FB using an informal call
 LD in1
 ST timer.IN // parameter IN
 LD T#10m12s
 ST timer.PT // parameter PT
 CAL timer // calling FB TON
 LD timer.ET
 ST timerValue // timer value
 LD timer.Q
 ST out1 // timer output

 // calling FB using an informal call
 CAL timer(IN := in1, PT := T#10m12s, Q => out1, ET => timerValue)

70 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

 // another way
 LD in1
 ST timer.IN
 CAL timer(PT := T#10m12s, ET => timerValue)
 LD timer.Q
 ST out1

END_PROGRAM

71 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

4.2 ST structured text language

The ST language is one of the languages defined by IEC 61 131-3. It is a high-performance
higher programming language originating from well-known languages such as Ada, Pascal and C.
It is object-oriented and contains all substantial elements of a modern programming language in-
cluding branching (IF-THEN-ELSE and CASE OF) and iteration statements (FOR, WHILE a RE-
PEAT). These elements can be nested. This language is a perfect tool to define complex function
blocks.

An algorithm written in the ST language can be divided into statements. Statements are
used to calculate and assign value, to control program execution flow and to invocate or to end or
terminate a POU. A part of a program calculating a value is called an expression. The expressions
produce the value necessary to execute statements.

4.2.1 Expressions

An expression is a construct which, when evaluated, yields a value corresponding to one of
the data types defined in section 3.2.

An expression is composed of an operator and an operand. An operand can be a literal, a
variable, a function invocation another expression.

The ST language operators are shown in Table 4.5.

Table.27 Operators in language ST

Operator Operation Priority

() Parentheses Highest
** Exponentiation
-

NOT
Sign

Complement
*
/

MOD

Multiplication
Division
Modulo

+
-

Addition
Subtraction

<, >, <= ,>= Comparison
=

<>
Equality

Inequality
&, AND Boolean AND

XOR Boolean exclusive OR
OR Boolean OR Lowest

To operands of operators apply the same limitations as to the inputs of the corresponding
functions defined in section 3.4.1.1. As an example, the result of the expression A**B is the same
as the result of the function EXP(A, B) as it is defined in Table 3.14

72 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

The evaluation of an expression consists of applying the operators to the operands in a se-
quence defined by the operator priority shown in Table 4.5. The operator with highest precedence
in an expression shall be applied first, followed by the operator of next lower precedence, etc., until
evaluation is complete. Operators of equal precedence shall be applied as written in the expression
from left to right.

Example 36 Operator priority during expression evaluation

PROGRAM EXAMPLE
 VAR // local variables
 A : INT := 2;
 B : INT := 4;
 C : INT := 5;
 D : INT := 8;
 X,Y : INT;
 Z : REAL;
 END_VAR

 X := A + B – C * ABS(D); // X = -34
 Y := (A + B – C) * ABS(D); // Y = 8
 Z := INT_TO_REAL(Y);
END_PROGRAM

By the evaluation of the expression A + B- C * ABS(D) in example 4.5 we receive the
value of -34. If another order of evaluation than stated is required, parentheses have to be used.
Then, for the same values of variables, when evaluating the expression (A + B - C) * ABS(D), we
receive the value of 8.

The functions are invoked as elements of the expressions comprising of the name of the
function, followed by a list of arguments in parentheses.

When an operator has two operands, the leftmost operand shall be evaluated first. For ex-
ample, in the expression COS(Y) * SIN(X) the expression COS(Y) shall be evaluated first, fol-
lowed by SIN(X), followed by evaluation of the product.

Boolean expressions may be evaluated only to the extent necessary to determine the unam-
biguous resultant values. For instance, if C<=D, then only the expression (C>D) can be evaluated
from the expression (C>D) & (F<A). Its value is Boolean zero with respect to the presumption and
this is sufficient for the entire logical product to be Boolean zero. It is not then necessary to evalu-
ate the second expression (F < A).

When an operator in an expression can be represented as one of the overloaded functions
defined in section 3.4.1.1, conversion of operands and results shall follow the rule and examples
given in this section.

73 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

4.2.2 Summary of statements in the ST language

A list of statements of the ST language is summarized in Table 4.6. The statements are ter-
minated with a semicolon. The character of the line end is treated in this language in the same man-
ner as the space character.

Table.28 List of examples of language ST

Statement Description Example Note

:= Assignment A := 22; Assignment of a value calcu-
lated on the right side to the

identifier on the left side
Function block

invocation
InstanceFB(
 par1 := 10,
 par2 := 20);

Function block invocation with
parameters passing

IF Selection state-
ment

IF A > 0 THEN
 B := 100;
ELSE B := 0;
END_IF;

Selection of an alternative con-
ditional to a Boolean expression

CASE Selection state-
ment

CASE kod OF
 1 : A := 11;
 2 : A := 22;
 ELSE A := 99;
END_CASE;

Command block selection condi-
tional to the value of the expres-

sion „code“

FOR Iteration state-
ment FOR

FOR i := 0 TO 10 BY 2
DO
 j := j + i;
END_FOR;

A multi-loop of a statement
block with initial and end condi-

tion and increment value

WHILE Iteration state-
ment WHILE

WHILE i > 0 DO
 n := n * 2;
END_WHILE;

A multi-loop of a statement
block with condition of termina-

tion of loop at the beginning
REPEAT Iteration state-

ment REPEAT
REPEAT
 k := k + i;
UNTIL i < 20;
END_REPEAT;

A multi-loop of a statement
block with condition of termina-

tion of loop at the end

EXIT Loop termina-
tion

EXIT; Premature termination of itera-
tion statement

RETURN Return RETURN; Leaving of a POU being just ex-
ecuted and return to the invoking

POU
; Empty statement ;;

74 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

4.2.2.1 Assignment statement

The assignment statement replaces the current value of a single or multi-element variable by
the result of evaluating an expression. An assignment statement consists of a variable reference on
the left-hand side, followed by the assignment operator ":=", followed by the expression to be eval-
uated.

The assignment statement is very powerful. It can assign a simple variable, but also a whole
data structure. As it can be seen in example 4.6 where the assignment statement A := B is used to
replace the value of simple variable A by the current value of variable B (both variables are of basic
type INT). However, assignment can be successfully used also for multi-element variables
AA := BB and then, all items of the multi-element variable AA are rewritten by the items of the
multi-element variable BB. The variables shall be of the same data type.

Example 37 Assignment of a simple and multi-element variable

TYPE
 tyRECORD : STRUCT
 serialNumber : UDINT;
 colour : (red, green, white, blue);
 quality : USINT;
 END_STRUCT;
END_TYPE
PROGRAM EXAMPLE
 VAR // local variables
 A, B : INT;
 AA, BB : tyZAZNAM;
 END_VAR

 A := B; // simple variable assignment
 AA := BB; // multi-element variable assignment
END_PROGRAM

The assignment statement can also be used for the assignment of the function return value
by placing the name of the function on the left-hand side of the assignment operator in the function
declaration body. The function return value shall be the result of the last evaluation of this assign-
ment statement.

Example 38 Assignment of function return value

FUNCTION EXAMPLE : REAL
 VAR_INPUT // input variables
 F, G : REAL;
 S : REAL := 3.0;
 END_VAR

 EXAMPLE := F * G / S; // function return value
END_FUNCTION

75 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

4.2.2.2 Function block call statement

Function blocks shall be invoked by a statement consisting of the name of the function
block instance followed by a parenthesised list of arguments with assigned values.

The order of the parameters in the list if on no importance when invoking a function block.
For each function block invocation all input variables do not need to be assigned. If a parameter
does not have a value assigned before function block invocation, then the last assigned value shall
be used (or the initial value, if no assignment has been performed yet).

Example 39 Function block call statement

// function block declaration
FUNCTION_BLOCK fb_RECTANGLE
 VAR_INPUT
 A,B : REAL; // input variables
 END_VAR
 VAR_OUTPUT
 perimeter, surface : REAL; // output variables
 END_VAR

 perimeter := 2.0 * (A + B); surface := A * B;
END_FUNCTION_BLOCK
// global variables
VAR_GLOBAL
 RECTANGLE : fb_RECTANGLE; // global FB instance
END_VAR
// program declaration
PROGRAM main
 VAR
 o,s : REAL; // local variables
 END_VAR

 // FB invocation with complete list of parameters
 RECTANGLE (A := 2.0, B := 3.0, obvod => o , plocha => s);
 IF o > 20.0 THEN

 END_IF;
 // FB invocation with incomplete list of parameters
 RECTANGLE (B := 4.0, A := 2.5);
 IF RECTANGLE . perimeter > 20.0 THEN

 END_IF;
END_PROGRAM

76 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

4.2.2.3 IF statement

The IF statement specifies that a group of statements is to be executed only if the associated
Boolean expression evaluates to be true (TRUE). If the condition is false, then either no statement
is to be executed, or the statement group following the ELSE keyword (or the ELSIF keyword if its
associated Boolean condition is true) is to be executed.

Example 40 IF statement

FUNCTION EXAMPLE : INT
 VAR_INPUT
 code : INT; // input variable
 END_VAR

 IF code < 10 THEN EXAMPLE:= 0; // at code < 10 function

returns 0
 ELSIF code < 100 THEN EXAMPLE:= 1; // at 9 < code < 100 function

returns 1
 ELSE EXAMPLE:= 2; // at code > 99 function returns 2
 END_IF;
END_FUNCTION

4.2.2.4 CASE statement

The CASE statement consists of an expression which shall evaluate to a variable of type
INT (the "selector"), and a list of statement groups, each group being labelled by one or more in-
teger or enumerated values or ranges of integer values, as applicable. It specifies that the first group
of statements, one of whose ranges contains the computed value of the selector, shall be executed .
If the value of the selector does not occur in a range of any case, the statement sequence following
the keyword ELSE (if it occurs in the CASE statement) shall be executed. Otherwise, none of the
statement sequences shall be executed.

Example 41 CASE statement

FUNCTION EXAMPLE: INT
 VAR_INPUT
 kod : INT; // input variable
 END_VAR
 CASE kod OF
 10 : EXAMPLE := 0; // at code = 10 function

returns 0
 20,77 : EXAMPLE := 1; // at code = 20 or code = 77 function

returns 1
 21..55 : EXAMPLE := 2; // at 20 < code < 56 function returns 2
 100 : EXAMPLE := 3; // at code = 100 function returns 3
 ELSE
 EXAMPLE := 4; // otherwise function returns 4
 END_CASE;
END_FUNCTION

77 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

4.2.2.5 FOR statement

The FOR statement is used if the number of iterations can be predetermined, otherwise the
WHILE or REPEAT constructs shall be used.

The FOR statement indicates that a statement sequence shall be repeatedly executed, up to
the END_FOR keyword, while a progression of values is assigned to the FOR loop control vari-
able. The control variable, initial value, and final value are expressions of the same integer type
(e.g., SINT, INT, or DINT) and shall not be altered by any of the repeated statements. The FOR
statement increments the control variable up or down from an initial value to a final value in incre-
ments determined by the value of an expression (this value defaults to 1). The test for the termina-
tion condition is made at the beginning of each iteration, so that the statement sequence is not ex-
ecuted if the initial value exceeds the final value.

Example 42 FOR statement

FUNCTION FACTORIAL : UDINT
 VAR_INPUT
 code : USINT; // input variable
 END_VAR
 VAR_TEMP
 i : USINT; // auxiliary variable
 tmp : UDINT := 1; // auxiliary variable
 END_VAR
 FOR i := 1 TO code DO
 tmp := tmp * USINT_TO_UDINT(i);
 END_FOR;
 FACTORIAL := tmp;
END_FUNCTION

4.2.2.6 WHILE statement

The WHILE statement causes the sequence of statements up to the END_WHILE keyword
to be executed repeatedly until the associated Boolean expression is false. If the expression is ini-
tially false, then the group of statements is not executed at all. For instance, the loop
FOR...END_FOR can be rewritten using the WHILE...END_WHILE construction. The example
4.17 can be rewritten by using the WHILE statement as follows:

78 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Example 43 WHILE statement

FUNCTION FACTORIAL : UDINT
 VAR_INPUT
 code : USINT; // input variable
 END_VAR
 VAR_TEMP
 i : USINT; // auxiliary variable
 tmp : UDINT := 1; // auxiliary variable
 END_VAR
 i := kod;
 WHILE i <> 0 DO
 tmp := tmp * USINT_TO_UDINT(i); i := i – 1;
 END_WHILE;
 FACTORIAL := tmp;
END_FUNCTION

It shall be a cycle error if a WHILE statement is used in an algorithm for which satisfaction
of the loop termination condition or execution of an EXIT statement cannot be guaranteed.

4.2.2.7 REPEAT statement

The REPEAT statement causes the sequence of statements up to the UNTIL keyword to be
executed repeatedly (and at least once) until the associated Boolean condition is true. For instance,
the loop WHILE...END_WHILE can be rewritten using the REPEAT...END_REPEAT construction
shown in the following example:

Example 44 REPEAT statement

FUNCTION FACTORIAL : UDINT
 VAR_INPUT
 code : USINT; // input variable
 VAR_TEMP
 i : USINT := 1; // auxiliary variable
 tmp : UDINT := 1; // auxiliary variable
 END_VAR
 REPEAT
 tmp := tmp * USINT_TO_UDINT(i); i := i + 1;
 UNTIL i > kod
 END_REPEAT;
 FACTORIAL := tmp;
END_FUNCTION

It shall be a cycle error if a REPEAT statement is used in an algorithm for which satisfaction
of the loop termination condition or execution of an EXIT statement cannot be guaranteed.

79 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

4.2.2.8 EXIT statement

The EXIT statement is used to terminate iterations before the termination condition is
satisfied.
When the EXIT statement is located within nested iterative constructs (statements FOR,

WHILE, REPEAT), exit shall be from the innermost loop in which the EXIT is located, that is, con-
trol shall pass to the next statement after the first loop terminator (END_FOR, END_WHILE, or
END_REPEAT) following the EXIT statement.

Example 45 EXIT statement

FUNCTION FACTORIAL : UDINT
 VAR_INPUT
 code : USINT; // input variable
 END_VAR
 VAR_TEMP
 i : USINT; // auxiliary variable
 tmp : UDINT := 1; // auxiliary variable
 END_VAR
 FOR i := 1 TO code
 IF i > 13 THEN
 tmp := 16#FFFF_FFFF; EXIT;
 END_IF;
 tmp := tmp * USINT_TO_UDINT(i);
 END_FOR;
 FACTORIAL := tmp;
END_FUNCTION

For calculation of the factorial for number greater than 13, the result will be greater than the

maximum number that can be stored in the variable of UDINT type. This case in example 4.14 is
treated by means of the EXIT statement.

4.2.2.9 RETURN statement

The RETURN statement shall provide early exit from a function, function block or pro-
gram. When a RETURN statement is used in a function, the function output shall be setup (a vari-
able having the same name as the function) before the RETURN statement is executed. Otherwise,
the function output value shall not be defined.

When a RETURN statement is used in a function block, the programmer should ensure set-
ting of the output variables of the function blocks before the statement is executed. The output vari-
ables that have not been setup, shall contain the value corresponding to the initialization value for
the corresponding data type or the value set in the preceding function block invocation.

80 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Example 46 RETURN statement

FUNCTION FACTORIAL : UDINT
 VAR_INPUT
 code : USINT; // input variable
 END_VAR
 VAR_TEMP
 i : USINT; // auxiliary variable
 tmp : UDINT := 1; // auxiliary variable
 END_VAR
 IF code > 13 THEN FACTORIAL := 16#FFFF_FFFF; RETURN; END_IF;
 i := code;
 WHILE i <> 0 DO
 tmp := tmp * USINT_TO_UDINT(i); i := i – 1;
 END_WHILE;
 FACTORIAL := tmp;
END_FUNCTION

For calculation of the factorial for number greater than 13, the result will be greater than the
maximum number that can be stored in the variable of UDINT type. This case in example 4.15 is
treated by means of the RETURN statement.

81 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

5 GRAPHIC LANGUAGES
The IEC 61 131-3 standard defines two graphic languages: LD, Ladder Diagram and FBD,

Function Block Diagram. Both are supported by the Mosaic programming environment.

5.1 Mutual graphic language elements

In the same way as text languages do, each POU declaration in a graphical language con-
tains a declaration and execution part. The declaration part is absolutely the same as the one text
languages have, the execution part is divided into so called networks. Each network contains the
following elements:

 Network identifier
 Network notes
 Network graphics

Network identifiers

Every network can feature an identifier which is a user defined identifier ended by a colon.
The identifier can be the target of a jump during branching a high performance POU program. The
scope of a network and its identifier is local within the frame of the programming unit in which the
network was located into. Network identifiers are not necessary.

Every network has an order number in the Mosaic programming environment. This number
is generated automatically and serves for better orientation in complicated POUs. After inserting a
new network, the networks are automatically re-numbered. The graphic editor enables quick search
for networks in the POU according to numbers.

Network notes

Between network identifiers and graphics a network note can be placed. This note can have
several lines and can contain characters of national alphabets. Network notes are not necessary.

Network graphics

The network graphics contain graphical elements interconnected via connection lines. A
graphical element can e.g. be a open contact, timer block or output coil. Connection lines deter-
mine the information flow, e.g. from the timer output to the output coil. Every graphic element can
voluntarily feature a note.

Flow direction in networks

Graphic languages are used for representing flows of “intended amounts” through one or
more networks representing a control algorithm. These intended amounts can be understood to be:

 “energy flow”, analogously to the energy flow in electromechanical relay systems
which are standardly used in relay diagrams

 “signal flow”, analogously to the signal flow between signal processing systems
which are standardly used in function block diagrams

The relevant “intended amount” flows along the lines between network elements according

82 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

to the following rules:
 Energy flows in the LD language flow from left to right.
 Signal flows in the FBD language flow from outputs (right side) of function blocks

to the inputs (left side) of other connected function blocks

83 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Figure 12 Mutual graphic language elements

5.2 LD ladder diagram language

The ladder diagram language originates from electromechanical relay circuits and is based
on graphic representation of relay logics. This language is mainly intended for processing bool sig-
nals.

84 TXV 003 21.02

Číslo obvodu
Komentář
obvodu

Komentář
prvku

Návěští

PLC programming according to the IEC 61 131-3 standard

As already mentioned, the execution parts of the POUs in the LD language are made from
networks. Networks are, in the LD language, bordered by so called power rails on the left and right
side. The logical one (TRUE) “leads” from the left power rail to all graphic elements connected to
it, usually switch and brake contacts. Depending on their state, the logical one is let through or not
into the following elements connected in the network. The last element on the right is usually the
output one and is connected to the right power rail. A coil typically represents the output element.

Figure 13 Serial and parallel connection of network elements

5.2.1 LD language graphic elements

The LD language network can contain following graphic elements:
 power rail
 connection lines
 contacts and coils
 graphic elements for controlling program executions (jumps)
 graphic elements for calling functions or function blocks

Graphic elements can be connected in serial or parallel order. Figure 5.2 shows variables
in1 and in2 connected in serial (AND) with parallel connected variables in3 and in4 (OR).
These variables are called contacts and the program tests their values (reads them). The variable
out1 is the name of the coil and the program writes into it.

The network shown on figure 5.2 is executed via the expression out1 := in1 AND in2
AND (in3 OR in4);

5.2.1.1 Power rail

85 TXV 003 21.02

Sériové kontakty Paralelní kontakty Výstupní cívka

Levá napájecí
sběrnice

Pravá napájecí
sběrniceSpojnice

PLC programming according to the IEC 61 131-3 standard

The network, in the LD language, is bordered from the left by a vertical line called the left
power rail and from the right by a vertical line called the right power rail. The left power rail is al-
ways “ON”. The right power rail has no defined state.

5.2.1.2 LD language connection lines

Connection line elements can be vertical or horizontal. The state of a connection line can be
“ON” or “OFF”, depending on the bool value 1 or 0. The term connection line state is a synonym
for the term energy flow.

A horizontal connection line is indicated by a horizontal line. A horizontal connection line
hands over the state of the element which is adjacent left to the element to the adjacent element on
the right from it.

A vertical connection line is indicated by a vertical line intersecting one or more horizontal
connection lines on each side. The state of vertical connection lines represents inclusive OR states
of ON horizontal connection lines on its left side, i.e. the state of vertical connection lines will be:

 OFF, if the states of all connected horizontal connection lines on its left side are OFF
 ON, if the state of one or more connected connection lines on its left side are ON

The state of the vertical connection lines is copied to all connected horizontal connection
lines to the right of it. The state of vertical connection lines is not copied to any connected horizon-
tal connection line to the left of it.

Table 29 FBD language connection lines

Graphic object Name Function
Horizontal connection

lines
Horizontal connection lines copy the
state of elements connected on the left
from it into elements right from it

Vertical connection
line with horizontal

connections

The state of the left horizontal con-
nection line is copied to all horizontal
connection lines to the right

Vertical connection
line with horizontal

OR connections

The state of the right horizontal con-
nection line is the result of the OR
logic function of the states of all left
horizontal connection lines

5.2.1.3 Contacts and coils

Contacts enable logic operations between the state of a left horizontal connection line and a
variable, which is assigned to the contact. The type of logic operation depends on the type of con-
tact. The resulting value is handed over to the right connection line. The contact does not affect the
value assigned to the bool variable.

86 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Contacts may be open or closed. An open contact is disconnected in idle mode, the same as
an electromechanical contact, (variable value is FALSE) and after switching on power it switches
(variable value is TRUE). The function of the closed contact is exactly opposite. It is switched in its
idle state (without power), i.e. the tested value is TRUE and after supplying power the contact is
opened (tested value FALSE). The function of contacts in the LD language is explained in Table
5.2.

Table 30 LD language contacts

Graphic object Name Function
Open contact Right power rail := left power rail AND VarName;

(Copies the state of the left power rail into the right
power rail if the state of the variable VarName is
TRUE, otherwise it writes FALSE into the rail)

Closed contact Right power rail:= left power rail AND NOT Var-
Name;

(Copies the state of the left power rail into the right
power rail if the state of the variable VarName is
FALSE, otherwise it writes FALSE into the rail)

The coil copies the left connection line into the right connection line and saves this state into
the assigned bool variable. Coil types and function are listed in Table 5.3.

Table 31 LD language coils

Graphic object Name Function
Coil Variable := left connection line;

(Copies the state of the left connection line into the
variable VarName as well as to the right connection
line)

Negated coil Variable:= NOT left connection line;
(Copies the negation of the state of the left connection
line into the variable VarName as well as to the right
connection line)

 Set coil Sets the value TRUE into the variable VarName if the
state of the left connection line is TRUE, otherwise it
leaves the variable in its original state. The state of the
right connection line copies the state of the left con-
nection line.

Reset coil Sets the value FALSE into the variable VarName if
the state of the left connection line is TRUE, otherwise
it leaves the variable in its original state. The state of
the right connection line copies the state of the left
connection line.

Evaluating energy flows in networks

The energy flows in networks are evaluated from left to right. During program calculations,
the individual networks in the POU are evaluated in the sequence top to bottom.

87 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

An example of evaluating serial contacts is shown in Table 5.4. The stated network executes
the expression C := in1 AND NOT in2. An example of evaluating parallel contacts is shown in
Table 5.5. The stated network executes the expression C := in1 AND (in2 OR in3).

Table 32 Energy flow evaluation-serial contacs

in1 in2 NOT in2 A B C
0 0 1 1 0 0
0 1 0 1 0 0
1 0 1 1 1 1
1 1 0 1 1 0

88 TXV 003 21.02

A B C

PLC programming according to the IEC 61 131-3 standard

Table 33 Energy flow evaluation-parallel contacs

in1 in2 in3 A B C
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 1 1

5.2.1.4 LD language program execution controlling

For controlling program execution, we have two possibilities in the LD language: jump to a
specific network in a current POU and termination of POU. Graphic symbols are shown Table 5.6.

Jumps are symbolized with a horizontal line ended with a double arrow. Handing over of
program on a given identifier is done, if the bool value of the connection line is 1 (TRUE). The
connection line for the jump condition can begin by a bool variable, a bool function output or func-
tion block or by the left power rail. An unconditioned jump is a special case of conditioned jump.
The goal of the jump is the network identifier within the POU, in which the jump shows up. It can-
not be jumped outside of one POU.

Conditional returns from functions and function blocks are implemented using the construc-
tion RETURN. Program execution is handed back to the calling POU, if the bool input is 1
(TRUE). Program execution will carry on in its standard running, if the bool input is 0. Uncondi-
tional return are created on physical ends of functions or function blocks or by the help of RE-
TURN, which is connected to the left power rail.

89 TXV 003 21.02

A

B

C

PLC programming according to the IEC 61 131-3 standard

Table 34 LD language handing over of program control

Graphic object Name Function
Unconditional jump Jump to a network with a identifier

Label

Conditional jump Jump to a network with a identifier
Label if the variable VarName has

a TRUE value, otherwise the program
carries on executing the next network

Unconditonal Return Terminates POU and returns control
to calling POU. The POU is also
terminated if all of its functions are
executed

 Conditional return
from POU

Terminates POU and returns control
to calling POU if the variable
VarName has a TRUE value,
otherwise the program continues
executing following networks

5.2.1.5 LD language function and function block calling

The LD language supports function and function block calling. The called POUs are repre-
sented in the diagram by a rectangle. Input variables are represented by a connection line from the
left, output variables by a connection line from the right. Names of input and output formal parame-
ters are stated inside the rectangles opposite the connection lines, over which current parameter val-
ues (variables or constants) are connected. By expandable function (e.g. ADD, XOR, etc.), the
names of input parameters are not stated. A function or function block name is stated in the upper
part of the rectangle. The function block instance name is stated above the rectangle. Function rect-
angles are drawn green, function blocks blue.

Figure 14 LD language graphic function representation

90 TXV 003 21.02

Jméno funkce

Jméno funkceJméno
parametru

Výstupní
proměnná

Jméno funkce
Jméno funkceVstupní

proměnné

PLC programming according to the IEC 61 131-3 standard

Function calling

If a function has at least one BOOL type input then this input is connected to the left power
rail of the network. If the function has a BOOL type output then this input is connected to the right
power rail of the network. Otherwise implicit bool variables EN and ENO are used for connecting
function into a network. The EN is a input variable of the BOOL type which conditions the function
calling. If a TRUE value is sent to the EN input, the function calling is executed. Otherwise the
function will not be called. In every case, the EN input value copies itself into the ENO output
function. The connection of the ENO output is not necessary. The use of N / ENO is typical in e.g.
arithmetic functions.

Table 35 LD function calling

Network Description

Calling of standard function XOR
Network executes expression

out1 := IN1 XOR in2

Calling of standard function XOR with ex-
panded numer of inputs

Network executes expression
 out1 := in1 XOR in2 XOR NOT in3

Calling the GT function while using the
implicit EN input. The implicit ENO output is

not used.

If the EN input has a TRUE value, network ex-
ecutes expression

out1 := var_A > var_B
Otherwise the variable value out1 is not
calculated.

Calling the ADD function while using the
implicit EN input and implicit ENO output.

If the EN input has a TRUE value, network ex-
ecutes expression

result := var_A + var_B
Otherwise the variable value result is not
calculated.
The ENO output copies the EN input state.

91 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Calling function blocks

Figure 15 LD language function block calling

When calling a function block in the LD language, similar rules as when calling function
apply. For us to be able to connect a function block into a network in the LD language, it has to
have some input of the BOOL type (because the signal flow in a LD network starts from the left
power rail to which it is possible to connect only BOOL type elements). If a function block does
not have any BOOL type input, it is possible to use the implicit input EN (enable) which conditions
actions of the function block. All functions and function blocks automatically contain this input
which is ensured by the programming environment. The EN input will be available for user defined
function blocks, even in the case, when the block definition does not state such a input. The same
applies for the implicit ENO (Enable Output) output. The EN is copied into the ENO output in the
same why as by functions.

92 TXV 003 21.02

Typ funkčního
bloku

Jméno funkceJméno
parametru

Jméno instance
funkčního bloku

Vstupní
proměnná typu

BOOL

Vstupní
proměnná typu

TIME

Výstupní
proměnná typu

BOOL

Výstupní
proměnná typu

TIME

PLC programming according to the IEC 61 131-3 standard

Table 36 LD calling function blocks

Network Description

Calling a standard function block R_TRIG
The output out1 is set only when the vari-
able in1 changes from 0 to a value of 1
(rising edge)

Calling a standard function block TON
The PT input variable (timer preselection) is
of the TIME type and is not connected to the
left power rail. In this case the constant
T#10s is written into this variable (10 sec-
onds)

Calling a standard function block CTU
The CU input is defined in the CTU function
block flowingly:

VAR_INPUT
 CU : BOOL R_EDGE;
END_VAR

Because of this, the input connection line of
this signal is terminated by the sign
rising edge evaluation

Calling a standard function block CTUD
CU and CD inputs are of the BOOL type and
have rising edge detectors. The PV input
(Preset Value) is not of the BOOL type and
thus it is not connected to the power rail. In
this case, the constant 500 is written into
the input. The CV output is also not a BOOL
type and thus it is not connected to the pow-
er rail. Its value is entered into the variable
countVal.

93 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

5.3 FBD language

The Function Block Diagram language is based on connecting function blocks and
functions. Functions and function blocks are represented in the FBD in the same way as in the LD,
as rectangles. The difference is, that the LD language can transfer only BOOL type values via the
connection lines but the FBD language can transfer values of random types between graphic ele-
ments.

Figure 16 FBD language network graphics

5.3.1 FBD language graphic elements

A network in the FBD language may contain the following graphic elements:
 connection lines
 graphic elements for controlling program jumps
 graphic elements for calling functions or function blocks

The FBD language does not contain any other graphic elements as contacts or coils as the
LD language. FBD language elements are connected using connection lines of signal flow. Outputs
of function blocks are not interconnected. The “wired OR” function is not allowed in the FBD lan-
guage. The bool OR block is used instead.

The network may be drawn in two ways using the FBD, as seen in Figure 5.6. The manner
of display can be whenever changed. The circuit executes the expression result := (var1 +
var2) – var3.

94 TXV 003 21.02

Funkce AND
Funkční blok

CTU

Jméno funkce
Jméno funkceVstupní

proměnné

Výstupní
proměnná

Výstup funkce je
připojen na

vstup funkčního
bloku

PLC programming according to the IEC 61 131-3 standard

95 TXV 003 21.02

A

B

PLC programming according to the IEC 61 131-3 standard

Figure 17 Language FBD manners of network

Evaluating signal flows in networks

The signal flow in circuits is evaluated from left to right. During program calculations, the
individual POU networks are evaluated from top to bottom. In the network in Figure 5.6 you can
see the sum of variables var1 and var2 and then the deduction of variable var3. The result will
be saved into the variable result.

5.3.1.1 FBD language connection lines

Connection line elements may be horizontal or vertical. The state of the connections repre-
sent the value of the connected variable. The term connection line state is a synonym for the term
signal flow.

A horizontal connection line is indicated by a horizontal line. A horizontal connection line
hands over the state of the element which is adjacent left to the element to the adjacent element on
the right from it.

The vertical connection line contains vertical lines connecting one or more horizontal con-
nection lines on the right side. The state of the vertical connection lines is copied to all connected

96 TXV 003 21.02

A

B

PLC programming according to the IEC 61 131-3 standard

horizontal connection lines to the right of it. The state of vertical connection lines is not copied to
any connected horizontal connection line to the left of it.

Table 37 FBD language connection lines
Graphic object Name Function

Horizontal connection
lines

Horizontal connection lines copy the
state of elements connected on the left
from it into elements right from it

Vertical connection
line with horizontal

connections

The state of the left horizontal con-
nection line is copied to all horizontal
connection lines to the right

Vertical connection
line with horizontal

OR connections

This construction (known as wired
OR) is not allowed in the FBD lan-
guage. Instead, the standard OR
BOOL function is used.

5.3.1.2 FBD language program execution controlling

For controlling program execution, we have two possibilities, identical to the LD language:
jump to a specific network in a current POU and termination of POU. Graphic symbols for the FBD
are shown in Table 5.10.

Jumps are symbolized with a horizontal line ended with a double arrow. Handing over of
program on a given identifier is done, if the bool value of the connection line is 1 (TRUE). The
connection line for the jump condition can begin by a bool variable, a bool function output or func-
tion block. If the condition is not stated, then we are talking about a unconditioned jump. The goal
of the jump is the network identifier within the POU, in which the jump shows up. It cannot be
jumped outside of one POU.

Conditional returns from functions and function blocks are implemented using the construc-
tion RETURN. Program execution is handed back to the calling POU, if the bool input is 1
(TRUE). Program execution will carry on in its standard running, if the bool input is 0. Uncondi-
tional returns are created on physical ends of functions or function blocks or by the help of the un-
conditioned element RETURN.

Table.38 FBD language handing over of program control

Graphic object Name Function
Unconditional jump Jump to a network with a identifier

97 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Label

Conditional jump Jump to a network with a identifier
Label if the variable VarName has

a TRUE value, otherwise the program
carries on executing the next network

Unconditonal Return Terminates POU and returns control
to calling POU. The POU is also
terminated if all of its functions are
executed

 Conditional return
from POU

Terminates POU and returns control
to calling POU if the variable
VarName has a TRUE value,
otherwise the program continues
executing following networks

5.3.1.3 FBD language function and function block calling

The graphic representation of functions and function blocks is very similar. These POUs are
represented in the diagram by a rectangle identically as in the LD language. Input variables are rep-
resented by a connection line from the left, output variables by a connection line from the right.
Names of input and output formal parameters are stated inside the rectangles opposite the connec-
tion lines, over which current parameter values (variables or constants) are connected. By expand-
able functions (e.g. ADD, XOR, etc.), the names of input parameters are not stated. A function or
function block name is stated in the upper part of the rectangle. The function block instance name is
stated above the rectangle. Function rectangles are drawn green, function blocks blue.

In the FBD language a function or function block does not have to have any BOOL type in-
put, so that it can be connected to a network. It is thus not necessary to use the implicit EN input,
but it is not prohibited. The same applies to the ENO output. If EN and ENO are used, their purpose
and behavior is the same as in the LD language.

98 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Function calling

Examples of function calling in the FBD language are shown in Table 5.11.

Table.39 FBD language function calling

Network Description

Calling of standard function XOR
Network executes expression

out1 := IN1 XOR in2

Calling of standard function XOR with expanded
numer of inputs

Network executes expression
 out1 := in1 XOR in2 XOR NOT in3

Calling the GT function without using EN and
ENO

Network executes expression
out1 := var_A > var_B

Calling the GT function while using the implicit
EN input. The implicit ENO output is not used.

If the EN input has a TRUE value, network
executes expression

out1 := var_A > var_B
Otherwise the variable value out1 is not
calculated.

Calling the ADD function while using the implicit
EN input and implicit ENO output.

If the EN input has a TRUE value, network
executes expression

result := var_A + var_B
Otherwise the variable value result is not
calculated.
The ENO output copies the EN input state.

99 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

Calling function blocks

Examples of function calling in the FBD language are shown in Table 5.12.

Table.40 FBD language function block calling

Network Description

Calling a standard function block R_TRIG
The output out1 is set only when the variable
in1 changes from 0 to a value of 1 (rising edge)

Calling a standard function block TON
The input variable in1 is negated.
The PT input variable (timer preselection) is of
the TIME type and the constant T#10.5s is
written into this variable (10,5 seconds)

Calling a standard function block CTU
The CU input is defined in the CTU function
block fo
lowingly:

VAR_INPUT
 CU : BOOL R_EDGE;
END_VAR

Because of this, the input connection line of this
signal is terminated by the sign
rising edge evaluation

Calling a standard function block CTUD
CU and CD inputs are of the BOOL type and have
rising edge detectors.
The constant 500 is written into the PV input
(Preset Value).
The CV output value is entered into the variable
countVal.

100 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

6 APPENDIXES

6.1 Directives

Programs written in one of the text languages may contain directives for the compiler,
which will enable to control the compiler’s work. Directives are entered into a vinculum.

For example the directive {$DEFINE new_name} defines a name “new_name”.

6.1.1 PUBLIC directive

The directive {PUBLIC} is used to mark public variables. The description of such a vari-
able will be saved into a file with the extension “.pub” during assembly. This file serves for trans-
ferring definitions of variables into visualization programs etc.

These directives may be used within the frame of declarations of data type or in the frame of
declarations of variables.

Syntax of expression is:
TYPE MyINT {PUBLIC} : INT; END_TYPE
VAR
 Var1 {PUBLIC} : BOOL;
 Var2 {PUBLIC} AT %R2000 : BYTE;
END_VAR

6.1.2 Directives for conditional program compilation

For conditional program compilation the following directives are used:

 {$IF <expression>}
 {$IFDEF <name>}
 {$IFNDEF <name>}
 {$DEFINE <name>}
 {$UNDEF <name>}
 {$END_IF}
 {$ELSE}
 {$DEFINED(<name>)}
 {$ELSEIF <name>}
These directives can be used in the declaration and execution part of a program.

101 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

6.1.2.1 $IF … $ELSE … $END_IF directives

The {$IF <expression>} directives are intended for conditional program assembly if
the expression is fulfilled. A branch can be also conditioned using {$ELSE}. The conditioned part
of the assembled program is finished by using the {$END_IF} directive. The expression must
contain only variables defined as VAR_GLOBAL CONSTANT, constants or
{$DEFINED(<name>)}. Operators in expression may only be:

 '>' - larger
 '<' - smaller
 '=' - equal
 NOT - negation in expression
 AND - bool multiplication
 OR - bool sum
 ')' - bracket
 '(' - bracket

Syntax of expression is:
{$IF <expression>} [{$ELSE}....] {$END_IF}

6.1.2.2 $IFDEF and $IFNDEF directives

These directives are intended for conditioned assemblies. The program following the direc-
tive {$IFDEF <name>} is assembled providing that the name stated in the directive exists (is de-
fined). On the other hand a program stated behind the directive {$IFNDEF <name>} will be as-
sembled only if the name stated in the directive is not defined. These directives can be combined
with {$ELSE} and {$ELSEIF} directives and so create alternatively assembled program parts.
The end of conditional program assembly is marked with the {$END_IF} directive.

Syntax of expression is:
{$IFDEF <name>} [{$ELSE}....] {$END_IF}
{$IFNDEF <name>} [{$ELSE}....] {$END_IF}

6.1.2.3 $DEFINE and $UNDEF directives

These directives are intended for adding or removing a name definition. The {$DEFINE
<name>} directive adds a name <name> definition. The name can then be used in the directives
{$IFDEF <name>} and {$IFNDEF <name>}. The {$UNDEF <name>} directive cancels
the name definition stated in the directive.

Syntax of expression is:
{$DEFINE <name>}
{$UNDEF <name>}

102 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

6.1.2.4 DEFINED directive

This directive is used for testing name <name> definition validity and it can be used in combina-
tion with the {$IF <expression>} directive as a part of the expression.

Syntax of expression is:
DEFINED (name)

Example:
{$IF DEFINED(ALFA) OR DEFINED(BETA)}
 VAR counter : INT; END_VAR
{$ELSE}
 VAR counter : DINT; END_VAR
{$END_IF}

6.1.3 ASM and END_ASM directives

The {ASM} directive is used for inserting a program in mnemocode into a program in one of
the IEC languages. The end of the inserted mnemocode is marked with the {END_ASM} directive.

Syntax of expression is:
{ASM}
{END_ASM}

6.1.4 ST_WARNING directive

The {ST_WARNING} directive is used for suppressing warnings of ST compiler. The
{ST_WARNING OFF} directive marks a place in a program from which ST warning messages
will be suppressed. The {ST_WARNING ON} directive marks a place in a program from which ST
warning messages will be again issued.

Syntax of expression is:
{ST_WARNING ON}
{ST_WARNING OFF}

103 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

6.1.5 OFFSET_REG directive

The {OFFSET_REG=10000} directive is used to set base addresses in a %R (%M) mem-
ory, where variables and instances will be mapped. The first variable will be located on a one level
higher address than stated in the directive (%R10001). The directive {END_OFFSET_REG} will
terminate the shifted variable allocation. Allocation of variables in PLC memory will carry on with
addresses 2 levels higher than before the directive {OFFSET_REG=..} was used.

Important!
These directives will disable the automatic variable address overlay check. When variables

overlay, the compiler will not prompt error!

Syntax of expression is:
{OFFSET_REG=xxx} where xxx is the address %R, where new mapping will occur
{END_OFFSET_REG}

104 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

6.2 Reserved keywords

The following table lists keywords which use is reserved by IEC 61 131-3 standard pro-
gramming languages and they cannot be used for user defined symbols.

Table 41 Reserved keywords
A ABS

ANY
ANY_NUM
AT

ACOS
ANY_BIT
ANY_REAL
ATAN

ACTION
ANY_DATE
ARRAY

ADD
ANY_INT
ASIN

B BOOL BY BYTE
C CAL

CD
CONFIGURATION
CTU

CALC
CDT
CONSTANT
CTUD

CALCN
CLK
COS
CU

CASE
CONCAT
CTD
CV

D D
DINT
DT

DATE
DIV
DWORD

DATE_AND_TIME
DO

DELETE
DS

E ELSE
END_CONFIGURATION
END_IF
END_STEP
END_VAR
EQ
EXPT

ELSIF
END_FOR
END_PROGRAM
END_STRUCT
END_WHILE
ET

END_ACTION
END_FUNCTION
END_REPEAT
END_TRANSITION
EN
EXIT

END_CASE
END_FUNCTION_BLOCK
END_RESOURCE
END_TYPE
ENO
EXP

F FALSE
FOR

F_EDGE
FROM

F_TRIG
FUNCTION

FIND
FUNCTION_BLOCK

G GE GT
I IF

INT
IN
INTERVAL

INITIAL_STEP INSERT

J JMP JMPC JMPCN
L L

LEFT
LN
LWORD

LD
LEN
LOG

LDN
LIMIT
LREAL

LE
LINT
LT

M MAX
MOVE

MID
MUL

MIN
MUX

MOD

N N NE NEG NOT
O OF ON OR ORN
P P

PV
PRIORITY PROGRAM PT

Q Q QI QU QD
R R

READ_WRITE
REPLACE
RETC
ROL
R_EDGE

RI
REAL
RESOURCE
RETCN
ROR

R_TRIG
RELEASE
RET
RETURN
RS

READ_ONLY
REPEAT
RETAIN
RIGHT
RTC

105 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

S S
SEMA
SINGLE
SR
STRING

ST
SHL
SINT
ST
STRUCT

SD
SHR
SL
STEP
SUB

SEL
SIN
SQRT
STN

T TAN
TIME_OF_DAY
TON
TYPE

TASK
TO
TP

THEN
TOD
TRANSITION

TIME
TOF
TRUE

U UDINT
USINT

UINT ULINT UNTIL

V VAR
VAR_INPUT

VAR_ACCESS
VAR_IN_OUT

VAR_EXTERNAL
VAR_OUTPUT

VAR_GLOBAL

W WHILE WITH WORD
X XOR XORN

106 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

CONTENTS
1 INTRODUCTION...3

1.1 The IEC 61 131 standard..3
1.2 Terminology..3
1.3 The basic idea of the IEC 61 131-3 standard...4

1.3.1 Mutual features..4
1.3.2 Programming languages...6

2 BASIC TERMS...8
2.1 Basic program blocks...8
2.2 POU variables declaration..10
2.3 POU executive part..11
2.4 Program example.. ..12

3 COMMON ELEMENTS...14
3.1 Basic elements...14

3.1.1 Identifiers...15
3.1.2 Literals...17

3.1.2.1 Numeric literals..17
3.1.2.2 Character string literals ...18
3.1.2.3 Time literals..20

3.2 Date type..21
3.2.1 Elementary data types..21
3.2.2 Generic data types..23
3.2.3 Derived data types..23

3.2.3.1 Simple derived data types...24
3.2.3.2 Derived array data type ...25
3.2.3.3 Derived data type Structure..28
3.2.3.4 Combining structures and arrays in derived data types...30

3.2.4 Data type Pointer..31

3.3 Variables..33
3.3.1 Variables declaration..33

3.3.1.1 Variable classes..34
3.3.1.2 Qualifiers in variables declaration...36

3.3.2 Global variables...37
3.3.3 Local variables...38
3.3.4 Input and output variables..39
3.3.5 Simple-element and multi-element variables...41

3.3.5.1 Simple-element variables...41
3.3.5.2 Array...42
3.3.5.3 Structures..43

3.3.6 Location of variables in the PLC memory...44
3.3.7 Variable initialization...46

3.4 Program organization units...48
3.4.1 Function...48

3.4.1.1 Standard functions..50
3.4.2 Function blocks..57

3.4.2.1 Standard function blocks..58
3.4.3 Programs..60

3.5 Configuration elements...61
3.5.1 Configuration..61
3.5.2 Resources...62

107 TXV 003 21.02

PLC programming according to the IEC 61 131-3 standard

3.5.3 Tasks...62

4 Text languages...64
4.1 IL Instruction list language...64

4.1.1 Instructions in IL..64
4.1.2 Operators, modifiers and operands..64
4.1.3 IL language user function definition..67
4.1.4 Calling function in IL language..67
4.1.5 Calling a function block in IL..68

4.2 ST structured text language..70
4.2.1 Expressions..70
4.2.2 Summary of statements in the ST language...72

4.2.2.1 Assignment statement...73
4.2.2.2 Function block call statement...74
4.2.2.3 IF statement..75
4.2.2.4 CASE statement...75
4.2.2.5 FOR statement..76
4.2.2.6 WHILE statement...76
4.2.2.7 REPEAT statement...77
4.2.2.8 EXIT statement..78
4.2.2.9 RETURN statement...78

5 Graphic languages..80
5.1 Mutual graphic language elements... ..80
5.2 LD ladder diagram language...82

5.2.1 LD language graphic elements...82
5.2.1.1 Power rail...83
5.2.1.2 LD language connection lines..83
5.2.1.3 Contacts and coils..84
5.2.1.4 LD language program execution controlling...86
5.2.1.5 LD language function and function block calling..87

5.3 FBD language...91
5.3.1 FBD language graphic elements..91

5.3.1.1 FBD language connection lines...93
5.3.1.2 FBD language program execution controlling...93
5.3.1.3 FBD language function and function block calling...94

6 APPENDIXES...97
6.1 Directives..97

6.1.1 PUBLIC directive..97
6.1.2 Directives for conditional program compilation..97

6.1.2.1 $IF … $ELSE … $END_IF directives..98
6.1.2.2 $IFDEF and $IFNDEF directives..98
6.1.2.3 $DEFINE and $UNDEF directives..98
6.1.2.4 DEFINED directive..99

6.1.3 ASM and END_ASM directives..99
6.1.4 ST_WARNING directive...99
6.1.5 OFFSET_REG directive..100

6.2 Reserved keywords..101

108 TXV 003 21.02

	1 INTRODUCTION
	1.1The IEC 61 131 standard
	1.2Terminology
	1.3 The basic idea of the IEC 61 131-3 standard
	1.3.1 Mutual features
	1.3.2 Programming languages

	2 BASIC TERMS
	2.1 Basic program blocks
	2.2 POU variables declaration
	2.3 POU executive part
	2.4Program example

	3 COMMON ELEMENTS
	3.1 Basic elements
	3.1.1 Identifiers
	3.1.2 Literals
	3.1.2.1 Numeric literals
	3.1.2.2 Character string literals
	3.1.2.3 Time literals

	3.2 Date type
	3.2.1 Elementary data types
	3.2.2 Generic data types
	3.2.3 Derived data types
	3.2.3.1Simple derived data types
	3.2.3.2 Derived array data type
	3.2.3.3 Derived data type Structure
	3.2.3.4 Combining structures and arrays in derived data types

	3.2.4 Data type Pointer

	3.3 Variables
	3.3.1 Variables declaration
	3.3.1.1 Variable classes
	3.3.1.2 Qualifiers in variables declaration

	3.3.2 Global variables
	3.3.3 Local variables
	3.3.4 Input and output variables
	3.3.5 Simple-element and multi-element variables
	3.3.5.1 Simple-element variables
	3.3.5.2 Array
	3.3.5.3 Structures

	3.3.6 Location of variables in the PLC memory
	3.3.7 Variable initialization

	3.4 Program organization units
	3.4.1 Function
	3.4.1.1 Standard functions

	3.4.2 Function blocks
	3.4.2.1 Standard function blocks

	3.4.3 Programs

	3.5 Configuration elements
	3.5.1Configuration
	3.5.2 Resources
	3.5.3 Tasks

	4 Text languages
	4.1 IL Instruction list language
	4.1.1 Instructions in IL
	4.1.2 Operators, modifiers and operands
	4.1.3 IL language user function definition
	4.1.4Calling function in IL language
	4.1.5 Calling a function block in IL

	4.2 ST structured text language
	4.2.1 Expressions
	4.2.2 Summary of statements in the ST language
	4.2.2.1 Assignment statement
	4.2.2.2 Function block call statement
	4.2.2.3 IF statement
	4.2.2.4 CASE statement
	4.2.2.5 FOR statement
	4.2.2.6 WHILE statement
	4.2.2.7 REPEAT statement
	4.2.2.8 EXIT statement
	4.2.2.9 RETURN statement

	5 Graphic languages
	5.1 Mutual graphic language elements
	5.2 LD ladder diagram language
	5.2.1 LD language graphic elements
	5.2.1.1 Power rail
	5.2.1.2 LD language connection lines
	5.2.1.3 Contacts and coils
	5.2.1.4 LD language program execution controlling
	5.2.1.5 LD language function and function block calling

	5.3 FBD language
	5.3.1 FBD language graphic elements
	5.3.1.1 FBD language connection lines
	5.3.1.2 FBD language program execution controlling
	5.3.1.3 FBD language function and function block calling

	6 APPENDIXES
	6.1 Directives
	6.1.1 PUBLIC directive
	6.1.2 Directives for conditional program compilation
	6.1.2.1 $IF … $ELSE … $END_IF directives
	6.1.2.2 $IFDEF and $IFNDEF directives
	6.1.2.3 $DEFINE and $UNDEF directives
	6.1.2.4 DEFINED directive

	6.1.3 ASM and END_ASM directives
	6.1.4 ST_WARNING directive
	6.1.5 OFFSET_REG directive

	6.2 Reserved keywords

